LYCEE ELHICHRIA

$\diamond \diamond \diamond \diamond$

DEVOIR DE CONTROLE N°1 MATHÈMATIQUES

 $\diamond \diamond \diamond \diamond$

Durée : 2H

Date: 04/11/2025

SECTION: 4ème Sc

PROF: Mr Aloui Fethi

NB: Le sujet comporte 3 pages.

La page 3 est une annexe à rendre avec la copie.

Exercice nº1:(6pts)

Soit la fonction f définie sur IR par :
$$f(x) = \begin{cases} \sqrt{x^2 + 1} + x & \text{si } x \le 0 \\ 1 - \frac{\sin(\pi x)}{\sqrt{x}} & \text{si } x > 0 \end{cases}$$

On désigne par \mathbf{C}_f la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1) a/Calculer $\lim_{m \to \infty} f$ puis interpréter graphiquement le résultat
 - b/ Montrer que pour tout x > 0, on $a: 1 \frac{1}{\sqrt{x}} \le f(x) \le 1 + \frac{1}{\sqrt{x}}$
 - c/ En déduire $\lim_{t\to\infty} f$ puis interpréter graphiquement le résultat
- 2) a/Montrer que \hat{f} est continue en 0.
 - b/ Montrer que f est continue sur IR
- 3) Calculer $\lim_{x \to 1^{-}} f(\frac{1}{x-1})$ et $\lim_{x \to +\infty} \frac{1 \cos[f(x) 1]}{[f(x) 1]^2}$
- 4) a/ Montrer que l'équation f(x) = 0 admet au moins une solution α dans $\frac{1}{2}$, 1 b/ En déduire que $\cos(\pi\alpha) = -\sqrt{1-\alpha}$
 - 5) Soit la fonction g définie sur $\left[0, \frac{\pi}{2}\right]$ par : $\begin{cases} g(x) = f(\frac{1}{\cos x}) & \text{si } x \in \left[0, \frac{\pi}{2}\right] \\ g\left(\frac{\pi}{2}\right) = 1 \end{cases}$

Montrer que g est continue sur $\left[0, \frac{\pi}{2}\right]$

Exercice n⁰2:(6 pts)

Soit
$$(U_n)$$
 la suite définie sur IN par :
$$\begin{cases} U_0 = 2 \\ U_{n+1} = \frac{U_n^2 + 1}{2U_n} \quad ; \forall n \in IN \end{cases}$$

- 1) a/ Montrer que \forall n \in IN; $U_n > 1$
 - b/ Montrer que la suite U est décroissante
 - c/ En déduire que la suite U est convergente et déterminer sa limite $\,\ell\,$.
- 2) Pour tout n de IN, on pose $V_n = \frac{1}{U_n 1}$
 - a/ Montrer que $\forall n \in IN; V_n > 0$
 - b/ Montrer que la suite V est croissante
 - c/ La suite V est-elle majorée ?
- 3) a/ Montrer que pour tout $n \in IN$, on $a: 0 \le U_{n+1} 1 \le \frac{1}{2} (U_n 1)$
 - b/ En déduire par récurrence que pour tout n \in IN , on a : $0 \le U_n 1 \le (\frac{1}{2})^n$
 - c/ Retrouver alors la limite $\,\ell\,$ de la suite U .
- 4) Pour tout $n \in IN^*$, on pose : $S_n = \sum_{k=1}^n U_k = U_1 + U_2 + \cdots + U_n$.
 - a/ Prouver que $\forall n \in IN^*$, on a: $n \leq S_n \leq n + 1 (\frac{1}{2})^n$
 - b/Calculer $\lim_{n\to+\infty} S_n$ et $\lim_{n\to+\infty} \frac{S_n}{n}$

Exercice nº3:(8 pts)

Soit *a* un nombre complexe de module $\sqrt{5}$ et d'argument θ

- 1) Résoudre dans \mathbb{C} l'équation (E): $\bar{a} z^2 10 z + 10 a = 0$
- 2) Dans le plan complexe est muni d'un repère orthonormé direct (o, \vec{u} , \vec{v}) On considère A, M_1 et M_2 les points d'affixes respectives a, $z_1=(1+i)a$ et $z_2=(1-i)a$
 - a/ Ecrire le nombre complexe (1 + i) sous forme exponentielle.
 - b/ Ecrire, sous forme exponentielle les nombres complexes : a, z_1 et z_2 en fonction de θ

Dans la suite de l'exercice on prend $a = \sqrt{2} + i\sqrt{3}$

- 3) Dans l'annexe ci-jointe <u>page 3</u> on a tracé le cercle Ω de centre 0 et de rayon $\sqrt{5}$ et K est le point d'affixe $i\sqrt{3}$
 - a/ Montrer que A appartient au cercle Ω puis construire A.
 - b/ Vérifier que A est le milieu du segment[M_1M_2].
 - c/ Montrer que OAM_1 est un triangle rectangle et isocèle en A.
 - d/ Construire alors les points M_1 et M_2 dans le repère (o, \vec{u} , \vec{v})
 - e/Calculer l'air du triangle OM_1M_2
 - f/ On désigne par $\Delta = \{M(z) \ tels \ que \ |z (1+i)a| = |iz (1+i)a| \}$ Montrer que $\Delta = (OA)$
- 4) La droite D: x = -1 coupe le cercle de centre 0 et de rayon 5 en un point H d'affixe z_H tel que $Im(z_H)>0$
 - a/Montrer que $z_H = a^2$
 - b/ En déduire la valeur exacte de $cos(2\theta)$ et de $sin(2\theta)$

annexe

