Lycée PILOTE SFAX II.

Prof: Kaghdane Kichem.

Devoir de contrôle N 7.

Le 29-10-2023. Durée : 2heures.

Classe: 4ème M₁.

A-S: 2023-2024.

Exercice 1: (5points)

On considère la suite (u_n) définie sur \mathbb{N} par : $u_n = \frac{\sqrt{n+1}}{2^n}$.

- 1°) Montrer que (u_n) est décroissante et qu'elle converge vers un réel α .
- 2°) Vérifier que pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2} \sqrt{\frac{n+2}{n+1}} u_n$. Déduire la valeur de α .
- 3°) a) Soit a un réel positif. Montrer que tout $n \in \mathbb{N}^*$, $(1+a)^n \ge 1+na$.
 - b) Déduire que tout $n \in \mathbb{N}^*$, $u_n \le \left(\frac{1}{\sqrt{2}}\right)^n$. Retrouver $\lim_{n \to +\infty} u_n$.
- 4°) Pour tout $n \in \mathbb{N}^*$ on pose : $S_n = \sum_{k=1}^n u_k$ et $T_n = \sum_{k=1}^n \left(\frac{1}{\sqrt{2}}\right)^k$.
- a) Exprimer T_n en fonction de n. Calculer $\lim_{n \to +\infty} T_n$.
- b) Montrer que (S_n) est croissante et qu'elle est majorée.
- c) Déduire que (S_n) converge vers un réel L.
- d) Démontrer que $\frac{\sqrt{2}}{2} \le L \le 1 + \sqrt{2}$.
- e) Calculer $\lim_{n\to+\infty} S_n . \sin(\pi \sqrt{n^2+1})$.

Exercice 2: (4points)

Le plan P est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On considère dans \mathbb{C} l'équation (E_a) : $z^2 - (1+a)(1+i)z + i(1+a^2) = 0$ où $a \in \mathbb{C} \setminus \{-i,i\}$.

- 1°) a) Vérifier que u = a + i est une solution de l'équation $\left(E_a\right)$.
 - b) Déterminer v la deuxième solution de l'équation (E_a) .
 - c) Montrer que $|u| + |v| \ge 2$.
- 2°) Dans cette question on suppose que |a| = 1.
- a) Montrer que $\frac{u}{v} \in \mathbb{R}$.
- b) Vérifier que $u^2 = a((a-\overline{a})+2i)$.
- c) En déduire que $2 \arg(u) \equiv \left(\arg(a) + \frac{\pi}{2} \right) [2\pi].$
- d) Déduire un argument de u lorsque $a = e^{i\frac{\pi}{4}}$.

Exercice 3: (5points)

Le plan P est rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) . On désigne par A le point d'affixe 1. On considère l'application f qui à tout point M d'affixe z non nul associe le point M'd'affixe z' telle que $z' = 1 - \frac{1}{7}$. On désigne par \mathscr{C} le cercle trigonométrique de centre O

- 1°) a) Montrer que lorsque M décrit le cercle \mathscr{C} , M'décrit un cercle \mathscr{C} que l'on caractérisera.
 - b) Montrer que les vecteurs $\overrightarrow{AM'}$ et \overrightarrow{OM} sont colinéaires.
 - c) Déduire une construction du point M'connaissant un point M de &
- 2°) Les cercles \mathscr{C} et \mathscr{C} se coupent en deux points B et C.(B étant le point d'ordonnée positive).
- a) Déterminer les coordonnées des points B et C.
- b) On désigne par z_B et z_C les affixes respectives des points B et C. Ecrire z_B et z_C sous forme exponentielle. En déduire que f(B) = C.
- 3°) Soit $\Gamma = \{M, M(z) \text{ tels que } z' \text{ est imaginaire} \}$.
- a) Déterminer et construire Γ .
- b) Soit M un point de Γ distinct de A. Montrer qu'il existe $\theta \in \left]0, 2\pi\right[$ tel que $z_M = \frac{1}{2}\left(1 + e^{i\theta}\right)$.
- c) On désigne par $S(\theta)$ l'aire du triangle OAM. Déterminer θ pour que $S(\theta)$ soit maximale.

Exercice 4: (6points)

$$\text{Soit f la fonction définie sur } \mathbb{R}\setminus \left\{1\right\} \text{ par } f\left(x\right) = \begin{cases} \frac{\sqrt{\left(x-1\right)^2+\left(x-1\right)^4}}{x-1} & \text{si } x\in \left]-\infty,1\right[\\ \frac{\sin\left(a\left(x-1\right)\right)}{x^2+x-2} & \text{si } x\in \left]1,+\infty\right[\end{cases}$$

On désigne par (\mathscr{C}) sa courbe représentative selon un repère orthonormé (O, \vec{i}, \vec{j}) .

- 1°) Détermine le réel a pour que f soit prolongeable par continuité en 1 et définir son prolongement.
- 2°) Calculer $\lim_{x \to +\infty} f(x)$. Interpréter le résultat graphiquement.
- 3°) a) Montrer que la droite Δ : y = x 1 est une asymptote à la courbe (\mathscr{C}).
 - b) Déduire $\lim_{x\to 0^-} x.f\left(\frac{1}{x}\right)$.
 - c) Etudier la position de la courbe ($\mathscr C$) par rapport à la droite Δ sur $\left]-\infty,1\right[$.
 - d) Montrer que f est strictement croissante sur $]-\infty,1[$.

4°) Dans l'annexe ci-jointe on a tracé selon un repère orthonormé $\left(O,\vec{i},\vec{j}\right)$ la courbe représentative $\left(C_g\right)$ d'une fonction g définie et continue sur $\left]0,+\infty\right[$. La courbe $\left(C_g\right)$ possède deux asymptotes d'équations x=0 et y=1.

Soit F la restriction de la fonction f sur] $-\infty$,1[et la fonction h = F \circ g et on désigne par (C_h) sa courbe représentative selon le même repère (O,\vec{i},\vec{j}) .

- a) Justifier la continuité de h sur $]0,+\infty[$.
- b) Déterminer le sens de variation de la fonction h sur $]0,+\infty[$.
- c) Déterminer les branches infinies de la courbe de la fonction h.
- d) Montrer que $\left(C_{_h}\right)$ est située en-dessous de $\left(C_{_g}\right)$ sur $\left]0,+\infty\right[$.
- e) Placer sur l'annexe le point de $\left(C_{_h}\right)$ d'abscisse 1.
- f) Tracer (C_h) .

Annexe de l'exercice 4.

Nom :.....

Prénom :.....

