Lycée Cité Arriadh II Ksar-hellal

DEVOIR DE CONTROLE №1 MATHEMATIQUE

A.S: 2024-2025 Niveau: 4^{ième} MATH Mr: Sofien Ben Haj Slimen Durée: 2 h 30 mn

Exercice Nº 1 (07points)

On donne sur le graphique ci-contre la représentation graphique (ζ_f) d'une fonction f définie et continue sur $]0,+\infty[$. On sait que :

- **...** La droite d'équation : y = x est une asymptote à (ζ_f) au voisinage de $+\infty$.
- **...** La droite d'équation : x = 0 est une asymptote à (ζ_f) .
- $\text{Pour tout } n \geq 2, \text{ la droite d'équation}: y = n \text{ coupe la courbe } \left(\zeta_f\right) \text{ en deux points } A_n \text{ et } B_n \text{ d'abscisses respectives } \alpha_n \text{ et } \beta_n \text{ tel que } 0 < \alpha_n < 1 < \beta_n \text{ .}$
- Pour tout $x \ge 1$, $f(x) \le x$.

1. Déterminer :

$$\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} \tan(x) \cdot f\left(\frac{1}{\tan(x)}\right) \; ; \; \lim_{x \to +\infty} \sin(f(x)) - f(x) \; ; \; \; \lim_{x \to +\infty} \frac{fof(x)}{fofof(x)}$$

- 2. a. Montrer que pour tout $n\geq 2, \ n\leq \beta_n\leq n+1.$
 - b. Déterminer $\lim_{n\to +\infty} \beta_n$ et $\lim_{n\to +\infty} \frac{\beta_n}{n}$
- 3. a. Justifier que la suite (α_n) est décroissante.
 - b. Montrer que l'équation $f(x)=\beta_n$ admet une unique solution c_n sur $]\alpha_{n+1}$, α_n [.
- $\text{4. On considère la fonction g définie sur }]0, +\infty[\text{ par } g(x) = \begin{cases} fof(x) & \text{si } x \geq 1 \\ 2-fof(x) & \text{si } 0 < x < 1 \end{cases}$

On désigne par $\left(\zeta_{\mathbf{g}}\right)$ la représentation graphique de la fonction \mathbf{g} .

- a. Montrer que g est continue en 1.
- b. Montrer que g est continue sur $]0, +\infty[$.
- c. Montrer que g est strictement croissante sur]0, $+\infty$ [.
- d. Déterminer $\lim_{x \to 0^+} g(x)$ et $\lim_{x \to +\infty} g(x)$
- e. Calculer $\lim_{x\to +\infty} \frac{g(x)}{x}$ et montrer que $\lim_{x\to +\infty} g(x)-x=0$.Interpréter graphiquement le résultat.
- $f. \ \ Justifier \ que \ g(c_2) = 0.$
- g. Etudier la position relative de $(\zeta_{\mathbf{f}})$ et $(\zeta_{\mathbf{g}})$.
- h. Dans l'annexe, on donne la courbe représentative de f, construire le point d'intersection de $\left(\zeta_{\mathbf{g}}\right)$ et l'axe des abscisses. Tracer $\left(\zeta_{\mathbf{g}}\right)$. (Voir annexe figure 1)

Exercice № 2 (06 points)

On considère la suite $(a_n)\,$ définie sur IN^* par $\left\{ \begin{array}{l} a_1=\frac{1}{2} \\ a_{n+1}=\frac{1}{2} \; a_n+\frac{1}{2^{n+1}} \end{array} \right. \text{ , } \forall \; n \in IN^*$

- 1. a. Montrer que pour tout $n \in IN^*$, $a_n \ge \frac{1}{2^n}$.
 - b. Montrer que la suite (a_n) est décroissante et en déduire qu'elle est convergente.
 - c. Calculer $\lim_{n \to +\infty} a_n$
- 2. a. Montrer que pour tout $n \in IN^*$, on a : $a_n = \frac{n}{2^n}$
 - b. Montrer que pour tout $n\geq 3$, $a_{n+1}\leq \frac{2}{3}$ a_n et que $a_n\leq \frac{81}{64}\left(\frac{2}{3}\right)^n$, pour tout $n\geq 3$.
 - c. En déduire $\lim_{n \to +\infty} a_n$
- 3. Soit la suite (S_n) définie sur IN^* par $S_n = \sum_{k=1}^n \frac{k}{2^k}$
 - a. Montrer que pour tout $n \in IN^*$, $S_n = 2 \frac{n+2}{2^n}$. Exprimer S_n en fonction de a_n
 - b. En déduire $\lim_{n \to +\infty} S_n$
- 4. Soit la suite (σ_n) définie sur IN* par $\sigma_n = \sum_{k=1}^n (-1)^k \frac{k}{2^k}$

On pose $\alpha_n=~\sigma_{2n}~$ et $\beta_n=~\sigma_{2n+1}$

- a. Calculer α_2 et β_2 .
- b. Montrer que pour tout $n \geq 1$, $\alpha_{n+1} \alpha_n = -\frac{n}{2^{2n+1}}$ puis déduire la monotonie de la suite (U_n) .
- c. Montrer que la suite $\left(\beta_{n}\right)$ est croissante.
- d. Vérifier que pour tout $n\geq 1$, $\alpha_n-\beta_n=~a_{2n+1}$
- e. Montrer alors que les suites (α_n) et (β_n) sont adjacentes .
- f. En déduire que (σ_n) converge vers une limite α et que : $-\frac{9}{32} \le \alpha \le -\frac{1}{8}$.

Exercice Nº 3 (07points)

Le plan complexe P est rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

On désigne par ζ le cercle trigonométrique et I le point d'affixe 1.

- 1. Pour tout $a \in \mathbb{C} \setminus \{1\}$. On considère l'équation $(E): z^2 (a \overline{a})z |a 1|^2 = 0$.
 - a. Développer $(a + \overline{a} 2)^2$.
 - b. Résoudre dans $\mathbb C$ l'équation (E).

- 2. On pose $a = e^{i\theta}$ avec $\theta \in]0,\pi[$
 - a. Ecrire a-1 et $1-\overline{a}$ sous la forme exponentielle.
 - b. Déterminer l'ensemble des points $M_1(a-1)$ lorsque $\theta \in]0,\pi[$.
 - c. Construire les points $M_1(a-1)$ et $M_2(1-\overline{a})$ (Voir annexe figure 2)
- 3. On considère l'application f du plan dans lui-même qui à tout point M(z) distinct de I on associe le point M'(z') tel que $z'=\frac{z-1}{1-\overline{z}}$
 - a. Montrer que , pour tout $z\neq 1$, on a : $M'\in \zeta$.
 - b. Déterminer l'ensemble Δ des points M(z) tel que f(M) = I.
 - c. Montrer que l'ensemble des points invariants par f est le cercle ζ privé du point I.
- 4. Soit A et B deux points du plan distinct de I d'affixes respectifs a et b.
 - a. Montrer que f(A) = f(B) si et seulement si $\frac{a-1}{b-1} = \overline{\left(\frac{a-1}{b-1}\right)}$.
 - b. Déduire que f(A) = f(B) si et seulement si les points I , A et B sont alignés.
- 5. Soit N un point du cercle ζ distinct de I donné.
 - a. Déterminer l'ensemble des points M(z) tel que f(M) = N.
 - b. Soit M un point quelconque du plan distinct de I.
 Construire le point M' à partir du point M. (Voir annexe figure 3)
- 6. a. Montrer que pour tout M un point du plan distinct de I, on a :

$$\left(\widehat{\overrightarrow{u}},\widehat{\overrightarrow{OM'}}\right) \equiv 2\left(\widehat{\overrightarrow{u}},\widehat{\overrightarrow{IM}}\right) + \pi \; [2\pi].$$

b. Montrer alors que si z est réel alors z' est un réel strictement négatif.

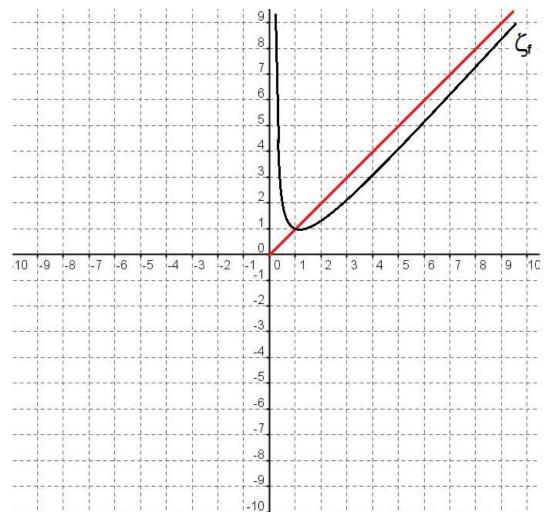


Figure 1

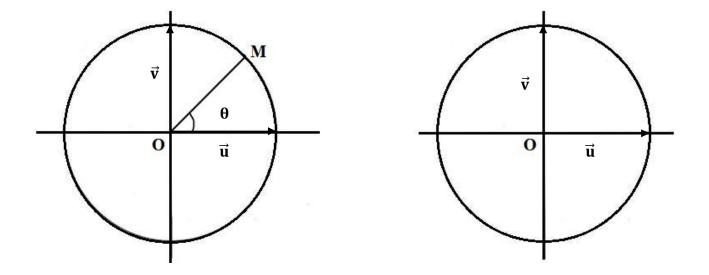


Figure 2 Figure 3