LycéeCité Arriadh II Ksar Helall

DEVOIR DE Controle№1 MATHEMATIQUE

A.S: 2023-2024 Niveau: 4ième MATH

Mr : Sofien Ben Haj Slimen Durée : 3 heures

Exercice No 1 (07points)

On donne sur le graphique (voir annexe) la représentation graphique (ζ_f) d'une fonction f définie et continue sur IR. On sait que :

La droite d'équation : $y = 2x + \frac{1}{2}$ est une asymptote à (ζ_f) au voisinage de $+\infty$.

La droite d'équation : $y = \frac{1}{2}$ est une asymptote à (ζ_f) au voisinage de $-\infty$.

 \triangleright ($\zeta_{\rm f}$) admet une demi tangente verticale au point d'abscisse 0.

 \triangleright (ζ_f) coupe la droite d'équation y = 1 en un seul point d'abscisse $\frac{1}{3}$

1. Déterminer : $\lim_{x \to \left(\frac{\pi}{2}\right)^{-}} (f(\tan x) - 2\tan x) ; \lim_{x \to +\infty} \frac{fofof(x)}{fof(x)}$

 $\underset{x \rightarrow -\infty}{lim} \left(\frac{1}{2f(x)-1} \right) . \, sin \left(\frac{\pi(2f(x)-1)}{2} \right) \hspace{0.5cm} ; \underset{x \rightarrow 0^+}{lim} \frac{fof(x)}{f(x)}$

2. On donne le tableau de variation d'une fonction g (voir annexe) définie et continue en tout réel distinct de 1. On sait que la représentation graphique $\left(\zeta_{g}\right)$ de la fonction g admet au voisinage de $+\infty$ une branche parabolique de direction celle de la droite $\left(\mathbf{0},\vec{\mathbf{1}}\right)$.

On pose $h = g \circ f$

- a. Déterminer l'ensemble de définition de h.
- b. Déterminer la nature de la branche infinie de la courbe de h au voisinage de $+\infty$.
- c. Montrer que h est continue et strictement décroissante sur $\frac{1}{3}$, $+\infty$ [.
- 3. On considère, pour $n \in IN$, l'équation : (E_n) : h(x) = n dans l'intervalle $\left]\frac{1}{3}$, $+\infty$ [.
 - a. Montrer que pour tout entier naturel n, l'équation (E_n) admet une solution unique a_n .
 - b. Déterminer a₀.
 - c. Montrer que la suite (a_n) est convergente et calculer sa limite.

Exercice № 2 (07points)

On désigne par (a_n) la suite définie par : $a_0 = a \in \left]0, \frac{1}{2}\right[$ et pour tout entier $n \in IN, a_{n+1} = a_n - a_n^2$.

- 1. a. Montrer que pour tout $n \in IN$, $0 < a_n < 1$.
 - b. Montrer que la suite (a_n) est monotone. En déduire que (a_n) est convergente et préciser sa limite.
- 2. Montrer que pour tout $n \in IN$, $a_n < \frac{1}{n+2}$. Retrouver $\lim_{n \to +\infty} a_n$
- 3. Montrer que pour tout $n \in IN$, $\sum_{k=0}^{n} a_k^2 = a_0 a_{n+1}$

- 4. Soit (b_n) la suite défini sur IN par : $b_0 = \sqrt{2}$ et pour tout entier $n \in IN$, $b_{n+1} = \frac{b_n}{\sqrt{1+(a_nb_n)^2}}$
 - a. Montrer que pour tout $n \in IN$, $b_n > 0$.
 - b. Montrer que pour tout $n \in \mathbb{N}$, on a : $\frac{1}{b_{n+1}^2} = \frac{1}{b_n^2} + a_n^2$, puis que pour tout $n \in \mathbb{N}$, $\frac{1}{b_n^2} = \frac{1}{2} + \sum_{k=0}^{n-1} a_k^2$
 - c. Exprimer b_n en fonction de a_n et déterminer $\lim_{n \to +\infty} b_n$
- 5. Soit (U_n) la suite défini sur IN par $U_n=na_n$
 - a. Montrer que pour tout $n \in \text{IN, } U_{n+1} U_n = (n+1) \left(\frac{1}{n+1} a_n\right) a_n.$
 - a. En déduire que la suite (U_n) est strictement croissante.
 - b. Montrer que la suite (U_n) est convergente vers un réel $L \in [0,1]$.
- 6. Soit $\alpha_n = \frac{1}{1-a_n}$ et $\beta_n = \frac{1}{n} \sum_{k=0}^n \alpha_k$
 - a. Montrer que la suite (α_n) est strictement décroissante.
 - b. Vérifier que, pour tout $n\in IN$, $\alpha_n=\frac{1}{a_{n+1}}-\frac{1}{a_n}$
 - c. En déduire que $\beta_n = \frac{n+1}{nU_{n+1}} \frac{1}{n.a}$
 - d. En déduire que la suite (β_n) converge vers le réel $\frac{1}{L}$

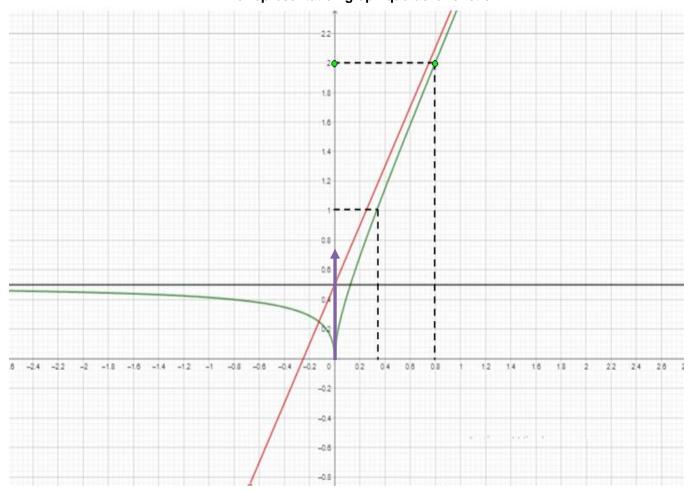
Exercice № 3 (06 points)

Dans le plan complexe P muni d' un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on donne les points A et B d'affixes respectives i et -i, et le cercle trigonométrique ζ de centre 0.

Soit F l'application qui à tout point M(z) de $P/\{0\}$ associe le point M'(z') de P tel que $z' = F(z) = \frac{z^2+1}{z}$ Soit le point M'' d'affixe z'' tel que $M'' = S_{(0,\vec{u})}(M)$.

- 1. a. Déterminer F(A) et F(B).
 - b. F admet-elle des points invariants?
 - c. Montrer que la droite (AB) est globalement invariante par F. (si $M \in (AB)$ alors $M' \in (AB)$)
- 2. a. Exprimer z' en fonction de $\cos\theta$ si $z=e^{i\theta}$ où $\theta\in IR$.
 - b. Résoudre dans $\mathbb C$ l'équation $(E): F(z)=2\cos\theta$ où $\theta\in IR$; mettre chacune des solutions de (E) sous la forme exponentielle.
 - c. En déduire que si M décrit le cercle ζ alors M' décrit un segment qu'on précisera.
- 3. a. Vérifier que pour tout nombre complexe z non nul, $z' z = \frac{1}{z}$
 - b. En déduire que $MM' = \frac{1}{0M}$ et que $\overline{MM'}$ et $\overline{OM''}$ sont deux vecteurs colinéaires de même sens.
 - c. En déduire que si $M \in \zeta$ alors OMM'M'' est un losange.
- 4. a. Montrer que pour tout point M distinct de A et B on a : $\begin{cases} \frac{OM'}{BM} = \frac{AM}{OM} \\ \left(\overrightarrow{BM}, \overrightarrow{OM'} \right) \equiv \left(\overrightarrow{OM}, \overrightarrow{AM} \right) [2\pi] \end{cases}$
 - b. Construire en justifiant le point M' dans le cas où $M \in \Delta$ avec Δ est la médiatrice de [OA]

La représentation graphique de la fonction f



Le tableau de variation de la fonction g

