LYCÉE DE TABARKA

Prof : MERSANI IMED

A.S: 2020/2021

Devoir de contrôle N°1

Épreuve : Mathématiques

Section : Mathématiques

Durée : 2 H

Coefficient: 4

* * * * * * * * * * * * *

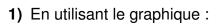
Exercice 1

..... (5 points)

Le plan est rapporté à un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$.

- ✓ La courbe \mathscr{C} ci-contre représente une fonction f définie et continue sur \mathbb{R}^* ;
- ✓ La droite Δ est une asymptote à \mathscr{C} au voisinage de $-\infty$;
- \checkmark Les droites d'équations x = 0 et y = 2 sont des asymptotes

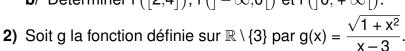
à la courbe \mathscr{C} .



a/ Déterminer f(-1), f(2), $\lim_{x \to +\infty} f(x)$, $\lim_{x \to -\infty} f(x)$,

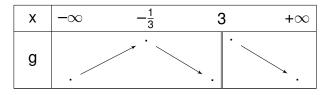
$$\lim_{x\to -\infty}\frac{f(x)}{x},\, \lim_{x\to 0^-}f(x),\, \lim_{x\to 0^+}f(x) \text{ et } \lim_{x\to 0^+}f\left(\frac{1}{x}\right).$$

b/ Déterminer f ([2,4]), f (] $-\infty$,0[) et f (]0, $+\infty$ [).



On donne ci-dessous son tableau de variation :

 a/ Copier et compléter le tableau de variation de g.



- b/ Déterminer l'ensemble de définition de la fonction g ∘ f.
- $\textbf{c}/ \ \ \text{D\'eterminer} \lim_{x \to -\infty} g \circ f(x), \ \lim_{x \to 0^{-}} g \circ f(x) \ ; \ \lim_{x \to 0^{+}} g \circ f(x) \ \text{et} \ \lim_{x \to -1} g \circ f(x).$
- **d**/ Montrer que l'équation $g \circ f(x) = -\frac{1}{2}$ admet une unique solution α dans]2,4[.

Exercice 2

7 points

Soit m un paramètre complexe de module 1.

On considère dans \mathbb{C} l'équation (E_m) : $z^2 - m(m+1)z + m^3 = 0$.

1) Résoudre dans $\mathbb C$ l'équation (E_m) .

Le plan \mathscr{P} est muni d'un repère orthonormé $(O, \overrightarrow{u}, \overrightarrow{v})$.

On donne les points M_1 , M_2 , M_3 et H d'affixes respectives $z_1 = m$, $z_2 = m^2$, $z_3 = m^3$

et $z_H = m + m^2 + m^3$.

- **2)** Dans cette questions, on prend m = $e^{i\theta}$, $\theta \in \left] \frac{\pi}{2}, \pi \right[$.
 - a/ Montrer que les points M₁, M₂ et M₃ ne sont pas alignés.
 - **b**/ Écrire les nombres complexes m-1, m+1 et $\frac{m-1}{m+1}$ sous forme exponentielle.
 - c/ Montrer que le point H est l'orthocentre du triangle M₁M₂M₃.
 - **d**/ Déterminer la valeur de θ pour laquelle H est le centre du cercle circonscrit au triangle $M_1M_2M_3$.
- 3) On suppose que m \neq 1 et m \neq -1. On considère les points A et N d'affixes respectoives : $z_A = 1$ et $z_N = \frac{1}{m^2}$.
 - **a**/ Montrer que (le triangle AM_1N est rectangle en A) \iff $m + m^2 = -(\overline{m + m^2})$.
 - **b**/ Justifier que : $m + m^2 = -(\overline{m + m^2}) \iff m^3 = -1$.
 - c/ Déterminer les valeurs de m pour lequelles le triangle AM₁N est rectangle en A.

Exercice 3

.....(8 points)

Soit f la fonction définie sur $[0, +\infty[$ par : $f(x) = \frac{2x+6}{x+1}$.

- 1) Montrer que f est strictement décroissante sur $[0, +\infty[$.
- 2) Soit (U_n) la suite définie sur $\mathbb N$ par : $U_0=2$ et $U_{n+1}=f(U_n),\, n\in \mathbb N.$
 - **a**/ Montrer que : $\forall n \in \mathbb{N}, U_n \geqslant 1$.
 - $\boldsymbol{b}/$ Justifier que la suite (\boldsymbol{U}_n) n'est pas monotone.
 - **c**/ Montrer que si (U_n) converge vers un réel ℓ alors $\ell=3$.
- 3) a/ Montrer que : $\forall n \in \mathbb{N}, \, |U_{n+1}-3| \leqslant \frac{1}{2} \, |U_n-3|.$
 - $\textbf{b}/ \text{ Montrer que}: \forall n \in \mathbb{N}, \, |U_n 3| \leqslant \left(\frac{1}{2}\right)^n.$
 - c/ En déduire que la suite (Un) est convergente et déterminer sa limite.
- **4)** Pour tout $n \in \mathbb{N}^*$, on pose : $V_n = \frac{1}{n} \sum_{k=0}^{n-1} U_{2k}$ et $W_n = \frac{1}{n} \sum_{k=0}^{n-1} U_{2k+1}$.
 - a/ Montrer que : $\forall n \in \mathbb{N}^*,\, U_{2k} \leqslant 3 \leqslant U_{2k+1}.$
 - $\textbf{b}/ \ \text{Montrer que}: \forall n \in \mathbb{N}^*, \, 3 \frac{4}{3n} \left(1 \frac{1}{4^n}\right) \leqslant V_n \leqslant 3 \text{ et } 3 \leqslant W_n \leqslant 3 + \frac{2}{3n} \left(1 \frac{1}{4^n}\right).$
 - $\label{eq:condition} \textbf{c}/ \text{ Calculer alors les limites de } (V_n) \text{ et } (W_n).$
- 5) Soit $n\in\mathbb{N}^*,$ on pose : $S_n=\frac{1}{n}\sum_{k=n}^{n-1}U_k.$
 - $\textbf{a} / \text{ V\'erifier que} : \forall n \in \mathbb{N}^*, \ S_{2n} = \frac{V_n + W_n}{2} \text{ et } S_{2n+1} = \frac{n(V_n + W_n)}{2n+1} + \frac{U_{2n}}{2n+1}.$
 - **b**/ Montrer alors que la suite (S_n) est convergente et déterminer sa limite.