Lycée Pilote de Mahdia	<u>Bevoir de contrôle nº 1</u> Mathématiques	Niveau : 4 ^{ème} Maths _I
<u>Date</u> : 06/11/2023	<u>Prof</u> : TAREK MEDDEB	<u>Durée</u> : 2 heures

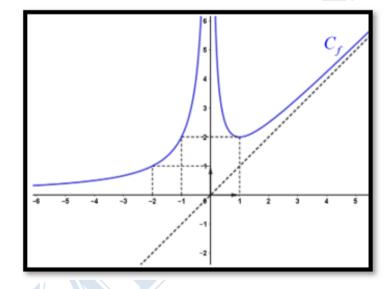
Exercice $n^{\circ}1$ (7 pts)

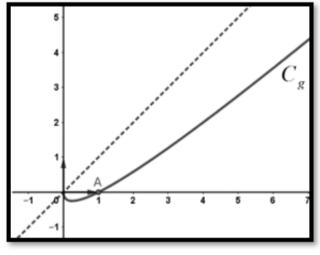
On donne ci-dessous:

La courbe représentative (C_f) d'une fonction f définie et continue sur IR^* .

La courbe représentative (C_g) d'une fonction g définie et continue sur $[0;+\infty[$. On sait que :

- La droite d'équation : x = 0 est une asymptote à (C_f) .
- ➤ La droite d'équation : y = 0 est une asymptote à (C_f) au voisinage de $-\infty$.
- ightharpoonup La droite d'équation : y = x est une asymptote de $\left(C_f\right)$ au voisinage de $+\infty$.
- $ightharpoonup (C_g)$ admet au voisinage de $+\infty$ une branche parabolique de direction y=x.
- La courbe (C_f) passe par les points des coordonnées (-2;1), (-1;2) et (1;2) et la courbe (C_g) passe par les points des coordonnées (0;0) et (1;0).





1) a Déterminer le domaine de définition de $f \circ g$.

b/ Déterminer : $\lim_{x\to 1^+} f \circ g(x)$ et $f \circ f(]-\infty;-2]$).

- 2) Déterminer: $\lim_{x \to +\infty} \frac{f \circ g(x)}{g(x)}$, $\lim_{x \to +\infty} f(g(x)-x)$, $\lim_{x \to +\infty} \frac{1-\cos \pi (f(x)-x)}{(f(x)-x)^2}$ et $\lim_{x \to -\infty} \frac{f \circ f \circ f(x)}{f \circ f(x)}$.
- 3) Soit h la fonction définie sur IR par : $h(x) = \begin{cases} f \circ f(x) & \text{si } x \in]-\infty;-2] \\ \frac{1-\cos(2\sqrt{x+2})}{x+2} & \text{si } x \in]-2;+\infty[\end{cases}$

Etudier la continuité de h en (-2).

- 4) a/ Montrer que, pour tout $n \ge 2$, il existe un unique réel $\alpha_n \in]-\infty;-2]$ tel que $f \circ f(x) = n$.
 - *b*/ Montrer que la suite $(\alpha_n)_{n>2}$ est décroissante.
 - c / Montrer que la suite $(\alpha_n)_{n\geq 2}$ est non minorée. En déduire $\lim_{n\to +\infty} \alpha_n$.

Exercice n°2 (6pts)

Le plan rapporté à un repère orthonormé direct (O, \vec{u}, \vec{v}) .

- 1) a / Résoudre dans l'ensemble $\mathbb C$ des nombres complexes l'équation : (E) : $z^2 (1+i)z i = 0$. On note z' et z'' les solutions de (E) et on désigne par M' et M'' les point d'affixes z' et z'' . b / Vérifier que $|z'-1|=|z''-1|=\sqrt{2}$. Conclure.
- 2) On donne sur la figure (1) de la feuille annexe, les points A, A', B et B' d'affixes respectives 1, -1, i et -i.

A tout point M d'affixe z, distinct de O, A, A', B et B', on associe les points M_1 et M_2 d'affixes respectives z_1 et z_2 tels que les triangles BMM_1 et AMM_2 soient rectangles et isocèles avec

$$(\widehat{M_1B}; \widehat{M_1M}) \equiv (\widehat{M_2M}; \widehat{M_2A}) \equiv \frac{\pi}{2} [2\pi].$$

a/ Justifier les égalités : $z-z_1=i(i-z_1)$ et $1-z_2=i(z-z_2)$.

- b/Vérifier que z_1 et z_2 peuvent s'écrire : $z_1 = \frac{1+i}{2}(z+1)$ et $z_2 = \frac{1-i}{2}(z+i)$.
- 3) On se propose, dans cette question, de déterminer les points M pour lesquels le triangle OM_1M_2 est équilatéral.

a/ Déterminer l'ensemble Δ de points M tels que $OM_1 = OM_2$ et tracer Δ sur la figure (2) de la feuille annexe.

b/ Montrer que : $(|z+1|^2 = 2|z|^2)$ équivaut à $(|z-1|^2 = 2)$.

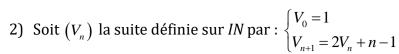
c/ Déterminer alors l'ensemble (Γ) de points M tels que $OM_1 = M_1M_2$.

Construire (Γ) sur la figure (2).

d/ En déduire les points M pour lesquels le triangle OM_1M_2 est équilatéral. Placer ces points sur la figure (2).

Exercice n°3 (7 pts)

- 1) Soit (a_n) la suite définie sur *IN* par : $a_n = \frac{n^2}{2^n}$.
 - a/ Montrer que : $\frac{a_{n+1}}{a_n} \le \frac{8}{9}$, pour tout $n \ge 3$.
 - b/ En déduire que : $a_n \le \left(\frac{8}{9}\right)^{n-3} a_3$, pour tout $n \ge 3$.
 - c/ Calculer alors $\lim_{n\to+\infty} a_n$ puis $\lim_{n\to+\infty} \frac{a_n}{n}$.



Et on pose : $W_n = V_n + n$, pour tout $n \in IN$.

a/ Montrer que, pour tout $n \in IN^*$, $V_n \ge n$. En déduire $\lim_{n \to +\infty} V_n$.

b/ Montrer que (W_n) est une suite géométrique. En déduire V_n en fonction de n.

3) On considère les suites (S_n) et (U_n) définies par :

$$S_n = \sum_{k=0}^n \frac{k}{2^k}, \ n \in IN \ \text{ et } \ U_n = S_n + \frac{\left(n-2\right)^2}{2^n}, \ n \ge 2.$$

a/ Montrer que, pour tout $n \in IN$, $V_{n+1}=2^{n}S_{n}+1$.

b/ En déduire que, pour tout $n \in IN$, $S_n = 2 - \frac{a_n}{n} - \frac{1}{2^{n-1}}$, puis calculer $\lim_{n \to +\infty} S_n$.

c / Montrer que les suites $(U_n)_{n\geq 6}$ et $(S_n)_{n\geq 6}$ sont adjacentes.

Bonne chance

Croyez en vos rêves et ils se réaliseront peut-être. Croyez-en vous et ils se réaliseront sûrement.

(Martin Luther King)

D.C n 1 – 4 Maths Tarek Meddeb Page 3 sur 4

FEUILLE ANNEXE À RENDRE AVEC LA COPIE

Devoir de contrôle n^{\bullet} 1 (29 – 10 – 2023)

