Devoir de contrôle N1	MATHÉMATIQUES
Niveau: Bac Maths	M. Magtouf
A.S 2025/2026	Durée 2H

Exercice 1 (4pts)

Les questions I, II et III sont indépendants

- I) Calculer $\lim_{x \to 1} \left(\frac{\sin(x \sqrt{x})}{x\sqrt{x} 1} \right)$
- II) Soit u_n une suite définie par $u_0=1$ et pour tout $n\in\mathbb{N}$ $u_{n+1}=\left(1+\frac{1}{2n+2}\right)u_n$ Montrer que pour tout $n\in\mathbb{N}$, $u_n=\frac{(2n+1)!}{2^{2n}(n!)^2}$
- III) Le plan complexe est rapporté a un repère orthonormé directe $(0, \vec{u}, \vec{v})$ Soit A et B deux points du plant d'affixes respectives a et b Montrer que $\frac{(a+b)^2}{ab}$ est un réel si et seulement si |a|=|b| ou les points 0, A et B sont alignés

Exercice 2 (5pts)

Le plan complexe est rapporté a un repère orthonormé directe $(0, \vec{u}, \vec{v})$. On considère les points A(1) et B(i) et on désigne par \mathscr{C} le cercle de centre 0 et de rayon 1

- 1) Résoudre dans \mathbb{C} l'équation (E1): $z^2 ie^{-i\theta}z + \frac{1}{4}(1 e^{-2i\theta}) = 0$, ou $\theta \in]-\pi,\pi[$
- 2) Pour $\theta \in]-\pi,\pi[$, on désigne par M le point d'affixe $e^{i\theta}$ et par M_1 et M_2 les points d'affixes respectives $z_1 = \frac{i(e^{-i\theta}+1)}{2}$ et $z_2 = \frac{i(e^{-i\theta}-1)}{2}$
 - a) Vérifier que M ∈ €
 - b) Montrer que $\overrightarrow{M_1M_2} = \overrightarrow{BO}$
 - c) Montrer que $\frac{\text{Aff}(\overline{BM_1})}{\text{Aff}(\overline{OM_1})} = -i \tan \frac{\theta}{2}$. En déduire que M_1 appartient au cercle Γ de diamètre [OB]
- 3) a) Vérifier que $z_1 = \cos \frac{\theta}{2} e^{i(\frac{\pi}{2} \frac{\theta}{2})}$
 - b) La bissectrice intérieure de l'angle $(\vec{u}, \overrightarrow{OM})$ coupe le cercle \mathscr{C} en N. Montrer que $(\overrightarrow{u}, \overrightarrow{OM_1}) + (\overrightarrow{u}, \overrightarrow{ON}) \equiv \frac{\pi}{2}[2\pi]$
 - 4) Dans la figure de l'annexe ci-jointe, construire le point M_1 puis le point M_2 pour un point M donné de cercle \mathscr{C} privé de A

Exercice 3 (6pts)

Soit la fonction f définie sur]-1, + ∞ [par $f(x) = \frac{x^2+3}{2(x+1)}$

- 1) Dresser le tableau de variation de f sur $]-1, +\infty[$.
- 2) Soit la suite réelle (u_n) définie par $u_0 = \frac{3}{2}$ et pour tout $n \in \mathbb{N}$. $u_{n+1} = f(u_n)$
 - a) Montrer que pour tout $n \in \mathbb{N}$, $1 \le u_n \le \frac{3}{2}$

- b) Montrer que la suite (u_n) est décroissante et convergente puis déterminer sa limite.
- 3) Montrer que pour tout $n \in \mathbb{N}$, $|u_{n+1} 1| \le \frac{1}{8} |u_n 1|$ et que $|u_n 1| \le \frac{1}{2^{3n+1}}$
- 4) Pour tout $n \in \mathbb{N}^*$, on pose $S_n = \frac{2}{n^4} \sum_{k=1}^n k^3 u_k$.
 - a) Montrer que pour tout $n \in \mathbb{N}^*$, $\sum_{k=1}^n k^3 = \frac{n^2(n+1)^2}{4}$
 - b) Montrer que pour tout $n \in \mathbb{N}^*$, $S_n \frac{1}{2} \left(1 + \frac{1}{n} \right)^2 = \frac{2}{n^4} \sum_{k=1}^n k^3 (u_k 1)$
 - c) En déduire que pour tout $n \in \mathbb{N}^*$, $\left| S_n \frac{1}{2} \left(1 + \frac{1}{n} \right)^2 \right| \le \frac{1}{7n} \left(1 \frac{1}{8^n} \right)$ et donner la limite de la suite S_n

Exercice 4 (5pts)

La courbe ci-dessous est celle d'une fonction f définie est continue en tout réel $x \neq 0$. Les droites : y = -1 et x = 0 sont des asymptotes à C_f .

 C_f admet au voisinage de $+\infty$ une asymptote oblique d'équation y = x-1.

1) Déterminer

a.
$$\lim_{x \to -\infty} \frac{1}{f(x)+1}$$
 b. $\lim_{x \to 0^+} x f\left(\frac{1}{x}\right)$ c. $\lim_{x \to -1} \frac{f\left(\tan\left(\frac{\pi x}{4}\right)\right)}{x+1}$ 2) On pose $g(x) = \frac{1}{\sqrt{f(x)}}$

- - a. Déterminer l'ensemble de définition de g.
 - b. La fonction g est-elle prolongeable par continuité en 0 ? Justifier.
 - c. Etudier les variation de g sur]0, $+\infty[$
- 3) Soit $h(x) = f \circ f(x)$ et C_h sa courbe représentative.
 - a. Déterminer l'ensemble de définition de h.
 - b. Déterminer $\lim_{x \to -\infty} h(x)$ et $\lim_{x \to -1} h(x)$ c. Déterminer $\lim_{x \to +\infty} (h(x) f(x))$.

 - d. Montrer que la droite d'équation y = x 2 est une asymptote a C_h au voisinage
- 4) Etudier la variation de h sur chacun des intervalles]0,1] et $[1,+\infty[$

Nom et prénom



