Kooli Med Hechmi

Devoir de Contrôle n°1

<u>Mathématiques</u>

Année scolaire

Exercice n°1: (3points)

- Pour chacune des questions suivantes, une seule des trois réponses proposées est correcte.
- L'élève indiquera sur sa copie le numéro de la question et la lettre de la réponse choisie.
- Aucune justification n'est demandée.
- 1.) Soit a un nombre complexe, l'ensemble des points M(z) tels que $(z-a)(\bar{z}-\bar{a})=2016$ est :
 - (a) Une droite
- (b) un cercle
- (c) le vide
- 2.) Soient z_1 et z_2 les solutions de l'équation : $mz^2 + 2m^2z 1 = 0$ où m est nombre complexe de module 2 On a alors:
 - (a) $|z_1.z_2| = 2$
- (b) $|z_1 + z_2| = 2$ (c) $|z_1 + z_2| = 4$
- 3.) Le nombre complexe $a = \sqrt{2}e^{i\frac{\pi}{24}}$ est une racine sixième de $8e^{i\frac{\pi}{6}}$
 - (a) vrai
- (b) faux
- 4.) Soit f une fonction dérivable sur \mathbb{R} telle que f(3) = 0 et f'(3) = 2 alors $\lim_{x\to 3} \frac{f(\sqrt{x+6})}{x-3}$ est égal à :
 - (a) $\frac{1}{2}$
- (b) 2
- (c) 0

Exercice n°2: (6points)

Soit U la suite réelle définie sur $\mathbb N$ par $U_0=2$ et pour tout $n\in\mathbb N$, $U_{n+1}={U_n}^2-U_n+1$

- 1.) a. Montrer que la suite U est croissante.
 - b. En déduire que , $\forall n \in \mathbb{N}$; $U_n \geq 2$.
- 2.) a. Montrer que si $U_n \ge n$ alors $U_n(U_n 1) \ge n$
 - b. Montrer par récurrence que , , $\forall n \in \mathbb{N}; U_n \geq n$. En déduire $\lim_{n \to +\infty} U_n$
- 3.) Soit la suite (S_n) definie par : $n \in \mathbb{N}$, $S_n = \sum_{k=n-1}^{k=n-1} \frac{1}{u_k}$
 - a. Montrer que, , $\forall n \in \mathbb{N}, \frac{1}{U_n} = \frac{1}{U_{n-1}} \frac{1}{U_{n+1}-1}$
 - b. En déduire que , $S_n = 1 \frac{1}{U_{n-1}}$ et calculer $\lim_{n \to +\infty} S_n$
- 4.) On pose: $T_n = \sum_{k=0}^{n-1} (U_k 1)^2$

Montrer que, $\forall n \in \mathbb{N}$, $T_n = U_n - 2$. Calculer alors $\lim_{n \to +\infty} T_n$

Exercice n°3: (6points)

Dans le plan complexe \wp rapporté à un repère orthonormé direct $(0, \vec{u}, \vec{v})$, on considère les points A et B d'affixes respectives a et 1 où a est un nombre complexe donné différent de 1.

Soit l'application $f : \wp \setminus \{B\} \rightarrow \wp$

$$M(z) \mapsto M'(z')$$
 telle que : $z' = \frac{z-a}{z-1}$

1.) Montrer que les affixes des points invariants par f sont les solutions de l'équation :

(E):
$$z^2 - 2z + a = 0$$

- 2.) a. On suppose que $a = 1 + e^{2i\theta}$ avec $\in]\frac{\pi}{2}$, $\frac{3\pi}{2}[$. Résoudre l'équation (E).
 - b. Mettre sous forme exponentielle chacune des solutions de (E).
- 3.) Dans cette question on suppose que a = -1

Soit M un point de $\mathcal{D}\setminus\{B\}$ d'affixe z et M' = f(M) le point d'affixe z'.

- a. Montrer que : $(\overrightarrow{u}, \overrightarrow{BM}) + (\overrightarrow{u}, \overrightarrow{BM}') \equiv 0[2\pi]$
- b. En déduire que la demi droite [BA) est la bissectrice de l'angle $(\overrightarrow{BM}, \overrightarrow{BM'})$
- c. Montrer que z' est imaginaire pur si et seulement si |z| = 1
- d. En déduire la construction du point M' image d'un point M du cercle trigonométrique privé du point B.

Exercice n°4: (4points)

Pour tout entier naturel n, on définit la fonction f_n sur l'intervalle] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [par :

$$f_n(x) = tanx - x - n$$

- 1. Etudier les variations de f_n sur $]-\frac{\pi}{2}, \frac{\pi}{2}[.$
- 2. a. Montrer que l'équation d'inconnue x , $f_n(x)=0$ admet une solution unique α_n dans l'intervalle] $-\frac{\pi}{2}$, $\frac{\pi}{2}$ [.
 - b. Donner, suivant les valeurs de x, le signe de $f_n(x)$.
 - c. Calculer $f_{n+1}(\alpha_n)$ pour $n \in \mathbb{N}$.
 - d. En déduire que la suite (α_n) est strictement croissante.
 - e. Prouver que (α_n) est convergente.
 - f. Déterminer la limite de $tan(\alpha_n)$ lorque n tend vers $+\infty$.
 - g. Déterminer alors la limite de (α_n) .