DEVOIR DE CONTROLE N°1

EXERCICE N°1

6 POINTS

- I- On considère dans l'ensemble $\mathbb C$ l'équation :
 - $(E): z^2 (1+a)(1+i)z + (1+a^2)i = 0 \quad \text{où } a \in \mathbb{C} \setminus \{-i \ ; i \}$
 - 1) Vérifier que u = a + i est solution de (E).
 - 2) En déduire la deuscième solution v de (E).
 - 3) On suppose dans cette question que : |a| = 1
 - a) Montrer que : $\frac{u}{v} \in \mathbb{R}$.
 - b) Montrer que : $u^2 = a \left[\left(a \overline{a} \right) + 2i \right]$ et que : $\arg(u) = \frac{1}{2} \arg(a) + \frac{\pi}{4} + k\pi$; $k \in \mathbb{Z}$.
- II- Dans le plan complexe muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) , on considère les points
 - M, M_1 , M_2 et Ω d'affixe respectifs : a, $z_1 = (1+i)a + 2i$, $z_2 = (1-i)a + 2i$ et 2i.
 - 1) Vérifier que $z_2 2i = -i(z_1 2i)$, en déduire que $M_2 = R(M_1)$ où **R** est la rotation de centre Ω et d'angle $-\frac{\pi}{2}$.
 - 2) On suppose que $a \neq 0$ et on note I le milieu du segment $[M_1M_2]$.
 - a) Montrer que : $I = t(M_1)$ où t est une translation dont on déterminera l'afixe de son vecteur.
 - b) Montrer que : $(I\Omega) \perp (M_1M_2)$.
 - 3) a) Montrer que : $\frac{z_1 a}{z_2 a} \in i\mathbb{R}$ si et seulement si |a| = 2.
 - b) En déduire l'ensemble des points M(a) du plan complexe pour tel que M appartient au cercle circonsrit au triangle $\Omega M_1 M_2$.

EXERCICE N°2

3POINTS

On considère la suite (u_n) définie sur $\mathbb{N}^*\setminus\{1\}$ par $U_n=\frac{1}{n}\sum_{k=0}^{n-1}\sin\left(\frac{k\pi}{n}\right)$

- 1) Calculer $\boldsymbol{U_2}$, $\boldsymbol{U_3}$ et $\boldsymbol{U_4}$
- 2) a) Justifier que $\sum_{k=0}^{n-1} e^{i\frac{k\pi}{n}} = \frac{2}{1-e^{i\frac{\pi}{n}}}$
 - b) Vérifiez que : $1 e^{i\frac{\pi}{n}} = -2i\sin\left(\frac{\pi}{2n}\right)e^{i\frac{\pi}{2n}}$
- 3) Prouvez alors que : $U_n = \frac{1}{n \tan\left(\frac{\pi}{2n}\right)}$ puis calculer $\lim_{n \to \infty} (u_n)$

LYCEE BIR LAHMAR

YCEE BIR LAHMAR

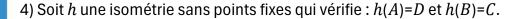
Le plan P est orienté dans le sens direct. Soit C le cercle de centre O de diamètre [BC].

A un point de \mathscr{C} tel que $(\widehat{BA}, \widehat{BC}) \equiv \frac{\pi}{3} [2\pi]$

On désigne par D le point diamétralement opposé à A sur C et I le symétrique de A par rapport à (BC). Et on désigne par J le milieu du segment [DI].

- 1)Soit f l'isométrie qui vérifie : f(A)=B, f(D)=C et f(I)=D.
- a) Montrer que f(0)=0.
- b) En déduire que f une rotation dont on précisera le centre et l'angle.
- c) Déterminer la droite Δ tel que : $f = S_{\Delta} \circ S_{(OI)}$.
- 2) Caractériser les isométries $g = S_{(IA)} o S_{(OI)}$ et $g \circ f^{-1}$.
- 3) Soit M un point du plan n'appartenant pas à la droite (IB).

On pose $f(M)=M_1$ et $g(M)=M_2$.



- a) Montrer que h est une symétrie glissante.
- b) Soit φ = $S_O \circ h$. Déterminer $\varphi(A)$ et $\varphi(B)$. Caractériser alors φ .
- c) Soit Δ_1 la médiatrice de [AB]. Caractériser l'isométrie : $S_{\Delta_1} \circ S_{(OI)}$. En déduire que : $h = S_{\Delta_1} \circ t_{\overline{AC}}$ et caractériser la symétrie glissante h

EXERCICE N°4

6 POINTS

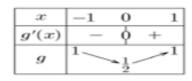
La courbe ci-dessous, est celle d'une fonction f définie est continue en tout réel $x \neq 0$.

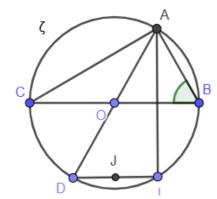
Les droites : y = -1 et x = 0 sont des asymptotes à C_f .

 \mathcal{C}_{f} , admet au voisinage de $+\infty$ une branche parabolique de direction celle de l'axe des abscisses.

Soit g la fonction définie sur [-1,1] par $g(x) = \frac{1}{1+\sqrt{1-x^2}}$.

On donne le tableau de variation de g





- 1) Calculer les limites suivantes. $\lim_{x\to 0^+} \frac{1}{f\left(\frac{-1}{x}\right)+1} \cdot \lim_{x\to 0^+} x f\left(\frac{1}{x}\right) \quad \lim_{x\to +\infty} f\left(\frac{-x}{f(x)}\right)$
- 2) a) Déterminer l'ensemble de définition de $g \circ f$.
 - b) Soit h la restriction de $g \circ f$ à l'intervalle $\mathbf{I} =]-\infty$, -1].

Montrer que h est continue et strictement décroissante sur I

- c) Montrer que pour tout $n \in \mathbb{N}^*$, il existe un unique $u_n \in]-\infty$, -1] tel que $h(u_n)=1-\frac{1}{2n}$
- d) Montrer que la suite (u_n) est décroissante.
- e) Montrer que $\lim_{n\to\infty} (u_n) = -\infty$
- 3) Soit φ la fonction définie sur $\mathbb R$ par : $\varphi(x) = \begin{cases} xf\left(\frac{-1}{\sqrt{x}}\right) & si \ x>0 \\ f(-x+1) & si \ x\leq 0 \end{cases}$
 - a) Montrer que φ est continue en 0.
 - b) Etudier les branches infinies de la courbe de ϕ

