Coefficient: 4

Classes: 4eme Maths 1

le 23/10/2025

2 Heures

« Qui va lentement, va sûrement et qui va sûrement, va plus loin »

EXERCICE N° 1 : (7 points)

Dans le plan complexe rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) supposé direct. On considère les points A et B d'affixes respectives i et – i. A tout point M (z) on associe par l'application f le point

M' tel que : z' = $\frac{z + iz\overline{z}}{1 + z\overline{z}}$.

<u>I</u>-1°/ Déterminer les points invariants par f.

2°/ Montrer que les points A, M et M' sont alignés.

- 3°/ a) Montrer que pour tout point $z \in C^* \setminus \{-i\}$, on a : Arg $(z') \equiv \frac{\pi}{2} (\overrightarrow{MO}, \overrightarrow{MB}) [2\pi]$.
 - b) Déduire que si M $\in \zeta_{OB} \Rightarrow M'$ décrit une droite à préciser.
 - c) Donner la construction du point M'image de M $\in \zeta_{[OB]}$ (M \neq O et M \neq B)
- 4°/ a) Montrer que pour tout z \neq i, on a : $|z'-z| = |z'-i| \Leftrightarrow M \in \zeta_{(O,1)}$
 - b) Déduire que si M $\in \zeta_{(0,1)} \Rightarrow M' = A * M$.

<u>II -</u> Soit M un point d'affixe z = $e^{i\theta}$, $\theta \in]-\frac{\pi}{2}, \frac{\pi}{2}[$ et M'= f(M).

1°/ Montrer que : z' = $\frac{1}{2}\cos\theta + \frac{1}{2}i(1 + \sin\theta)$.

2°/a) Résoudre dans C : $2e^{i\theta} z^2 - (1 + ie^{i\theta}) z + i + e^{i\theta} = 0$.

On note z₁ et z₂ les solutions de (E) avec z₂ est la solution non imaginaire de l'équation.

- b) Ecrire la solution z₂ sous forme exponentielle.
- c) Déterminer l'ensemble (E) des points M_2 (z_2) quand θ décrit]- $\frac{\pi}{2}$, $\frac{\pi}{2}$ [.
- d) Soit N le point d'affixe cos θ . Montrer que OM'NM" est un losange.

EXERCICE N°2 : (7 points)

On considère la suite (U_n) $_{n \in IN}$ définie par : U₀ = $\frac{1}{2}$ et pour tout $n \in IN$, U_{n+1} = U_n + $\frac{1}{2U_{...}}$.

- 1°/ Montrer, par récurrence que pour tout $n \in IN$, $U_n \ge \frac{1}{2}$.
- $2^{\circ}\!/$ a) Montrer que la suite (Un) $_{n\in IN}$ est croissante.
 - b) Montrer que la suite (U_n) $_{n\in IN}$ est divergente et en déduire sa limite.
- 3°/ a) Montrer que pour tout n \in IN; on a :1 $\leq U_{k+1}^2-U_k^2\leq 1+U_{k+1}-U_k$.
 - b) En déduire que pour tout $n \in IN$, on a : $n \le U_n^2 \frac{1}{4} \le n + U_n \frac{1}{2}$.
 - c) Retrouver alors la limite de la suite $(U_n)_{n \in IN}$.
- 4°/ On pose la suite (S_n) définie sur IN* par : S_n = $\sum_{k=0}^{k=n-1} \frac{1}{U_k}$ pour tout n \in IN*.
 - a) Montrer que pour tout $n \in IN^*$, $S_n = 2U_n 1$.

Voir verso 🐨

- b) En déduire la limite de la suite S_n quand tend vers +∞.
- 5°/ On pose, pour tout $n \in IN$, $V_n = \sum_{k=0}^{k=2n} \frac{(-1)^k}{U_k} = \frac{(-1)^0}{U_0} + \frac{(-1)^1}{U_1} + \frac{(-1)^2}{U_3} + \dots + \frac{(-1)^{2n}}{U_{2n}}$

et
$$W_n = V_n - \frac{1}{U_{2n+1}}$$

- a) Montrer que la suite (V_n) n∈IN est décroissante et que la suite (W_n) n∈IN est croissante.
- b) En déduire que les suites (V_n) et (W_n) sont adjacentes et convergent vers la même limite ℓ .
- c) Vérifier que $\frac{4}{2} \le \ell \le 2$.

EXERCICE N°3: (6 points)

Dans le graphique ci-contre, on a représenté dans le plan muni d'un repère orthonormé (0, i, j), la courbe (C) d'une fonction f définie et continue sur IR\ {-1}.

On sait que : la droite Δ : y = x - 4 est une asymptote à (C) au voisinage de + ∞ ,

: la droite y = - x est une direction asymptotique à la courbe (C) au voisinage de $-\infty$ et la droite x = -1 est une asymptote à (C).

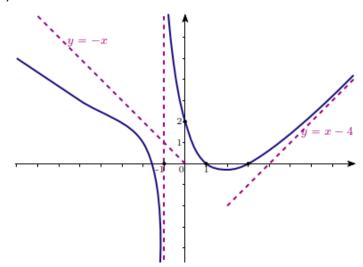
1°/ Par une lecture graphique,

a) déterminer :

$$\lim_{x \to -\infty} f(x) + x; \text{ et } \lim_{x \to (-1)^+} f(x)$$

b)
$$\lim_{x \to -\infty} \frac{f(f(x) + x)}{x}$$
; $\lim_{x \to (-1)^{-}} fof(x) + f(x)$
 $\lim_{x \to +\infty} \frac{f(-f(x))}{x}$ et $\lim_{x \to (-1)^{+}} fof(x) - f(x)$.

$$\lim_{x \to +\infty} \frac{f(-f(x))}{x} \quad \text{et} \quad \lim_{x \to (-1)^+} f \circ f(x) - f(x).$$



2°/ Montrer que :
$$\lim_{x\to -1} f(x) \cdot \sin(\frac{\pi}{f(x)}) = \pi$$

et
$$\lim_{x \to +\infty} f(x) \cdot (1 - \cos(\frac{2}{\sqrt{f(x)}})) = 2$$
.

- 3°/ Déterminer les variations de la fonction fof sur l'intervalle [0, 1].
- 4°/ Déterminer $f(]-\infty$, -1[).
- 5°/ Pour tout entier n tel que n \geq 2, on définit la fonction g_n sur l'intervalle [0, 1] par $g_n(x) = f(x) nx$
 - a) Montrer que pour tout entier $n \ge 2$, l'équation $g_n(x) = 0$ admet dans l'intervalle [0, 1]une unique solution a_n .
 - b) Vérifier que $g_{n+1}(x) g_n(x) = -x$. En déduire que pour tout entier n tel que $n \ge 2$, $g_{n+1}(a_n) < 0$
 - c) Montrer alors que la suite (a_n) est décroissante.
 - d) Montrer que la suite est convergente a_n .

Pour une bonne réussite