

<u>Devoir de contrôle n°1</u> Mathématiques

Coefficient: 4

Classe: 4eme Maths 1

Mardi: 05-11-2024

2Heures

N.B: Le sujet comporte 2 pages : 1/2 à 2/2

EXERCICE \mathcal{N}° 1 : (6points)

Soit la suite U définie sur IN* par : $\begin{cases} U_1 = \frac{1}{2} \\ U_{n+1} = \frac{2U_n}{1 + U_n^2} & pour \cdot tout \cdot n \in \square \ * \end{cases}$

- 1°/ a) Montrer que pour tout $n \in IN^*$, $0 < U_n < 1$
 - b) Montrer que la suite Un est croissante.
 - c) En déduire que la suite est convergente puis déterminer sa limite.
- 2°/ On pose, pour tout $n \in IN^*$, $V_n = \frac{1}{2^n} \sum_{k=1}^n 2^k U_k$.
 - a) Montrer que pour tout $n \in IN^*$, $V_{n+1} V_n = \frac{1}{2^{n+1}} \left[2^{n+1} U_{n+1} \sum_{k=1}^n 2^k U_k \right]$.
 - b) Montrer que pour tout $n \in IN^*$, $\sum_{k=1}^{n} 2^k U_k \prec 2^{n+1} U_{n+1}$. En déduire que la suite V est croissante.
 - c) En utilisant la relation précédente montrer que $V_n \prec 2$ et que la suite V est convergente.
- 3°/ a) Vérifier que, pour tout $n \in IN^*$, on a : $\frac{2^{n+1}}{U_{n+1}} \frac{2^n}{U_n} = 2^n U_n$, en déduire que $V_n = \frac{2}{U_{n+1}} \frac{1}{2^{n-2}}$.
 - b) En déduire $\lim_{n\to+\infty} V_n$.

EXERCICE N° 2: (6 points)

Dans le graphique ci-contre, on a représenté dans le plan muni d'un repère orthonormé (O, i, j), la courbe (C) d'une fonction f définie et continue sur $IR\setminus\{-1\}$.

On sait que : la droite Δ : y = x - 4 est une asymptote à (C) au voisinage de $+\infty$,

: la droite y = -x est une direction asymptotique à la courbe (C) au voisinage de $-\infty$

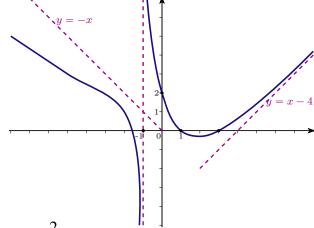
et la droite x = -1 est une asymptote à (C).

1°/ Par une lecture graphique, déterminer :

$$\lim_{x \to -\infty} f(x) + x; \lim_{x \to +\infty} \frac{f(x)}{x}; \lim_{x \to +\infty} f(x) - x \text{ et } \lim_{x \to (-1)^+} f(x)$$

2°/
$$\lim_{x \to (-1)^{-}} f(x)$$
; $\lim_{x \to -\infty} \frac{f(f(x) + x)}{x}$;

et
$$\lim_{x \to (-1)^+} fof(x) - f(x)$$
.



3°/ Montrer que :
$$\lim_{x \to (-1)^-} f(x) \cdot \sin(\frac{2}{f(x)}) = 2$$
 et $\lim_{x \to +\infty} f(x) \cdot (1 - \cos(\frac{2}{\sqrt{f(x)}})) = 2$.

Voir verso @

- 4°/ Déterminer les variations de la fonction fof sur l'intervalle [0, 1].
- 5°/ Déterminer $f(]-\infty$, -1[).
- 6°/ Pour tout entier n tel que n \ge 2, on définit la fonction g_n sur l'intervalle [0, 1] par $g_n(x) = f(x) nx$
 - a) Montrer que pour tout entier $n \ge 2$, l'équation $g_n(x) = 0$ admet dans l'intervalle]0, 1[une unique solution a_n .
 - b) Vérifier que $g_{n+1}(x) g_n(x) = -x$. En déduire que pour tout entier n tel que $n \ge 2$, $g_{n+1}(a_n) < 0$
 - c) Montrer alors que la suite (a_n) est décroissante.
 - d) Montrer que la suite est convergente a_n .

EXERCICE N°3: (8 points)

Dans le plan complexe rapporté à un repère orthonormé (O, \vec{u}, \vec{v}) supposé direct. On considère le point A, B, C et I d'affixe respectives i, -i,1 – i et 1 + i. Soit f l'application du plan P\{A} dans P qui a tout point M(z) associe le point M'(z')

tel que z' =
$$\frac{1-iz}{z-i}$$

- 1°/ a) Vérifier que pour tout z \neq i on a : z' = $\frac{-i(z+i)}{z-i}$
 - b) En déduire l'ensemble des points M d'affixe z tels que z' soit imaginaire pure.

2°/a) Vérifier que
$$(\vec{u}, OM^{\dagger}) = -\frac{\pi}{2} + (\overrightarrow{AM}, \overrightarrow{BM}) + 2k \pi$$

- b) En déduire l'ensemble des points M d'affixe z tels que z' soit un réel 3°/ Soit l'équation (E): $(1-iz)^3 = (z-i)^3$.
 - a) Montrer que si z est une solution de (E) alors \bar{z} est une solution de (E).

b) Soit
$$\alpha \in]-\frac{\pi}{2}, \frac{\pi}{2}[$$
. Montrer que $\frac{1-i\tan\alpha}{\tan\alpha-i} = e^{i\left(\frac{\pi}{2}-2\alpha\right)}$.

- c) En déduire les valeurs de α tels que tanα soit une solution de (E).
- 4°/ Soit $\theta \in]-\pi,\pi[$, On considère l'équation : $(E_{\theta}): z^2-(2+e^{i\theta})z+2+(1-i)e^{i\theta}=0.$
 - a) Vérifier que 1 i est une solution de (E_{θ})
 - b) En déduire l'autre solution de (E_{θ}) .
- 5°/ Soit M le point d'affixe z = 1 + i + $e^{i\theta}$ et M'd'affixes z' = $\frac{1-iz}{z-i}$.
 - a) Montrer que lorsque θ varie sur $]-\pi,\pi[$ alors le point M varie sur un cercle que l'on déterminera.
 - b) Montrer que z' + i = 1- i $\tan\left(\frac{\theta}{2}\right)$. En déduire $\overrightarrow{CM'} = -\tan\left(\frac{\theta}{2}\right)\overrightarrow{v}$.
 - c) Montrer que le point M'varie sur une droite que l'on déterminera.

Bon Travail