Prof : Hédi Smida

Devoir de contrôle n°1 en mathématiques

 $dur\acute{e}e: \lim_{x\to 4} 5x^2 + 12x - 8 min$

Lycée Ghraiba

Classe: 3ème Tech1

Exercice N°1:

Pour chacune des questions suivantes, une seule réponse est correcte, cocher la :

- 1) La mesure principale de l'angle $(\overrightarrow{u}, \overrightarrow{v})$ dont l'un de ces mesures est $\frac{119\pi}{11}$ est
- a) $-\frac{4\pi}{11}$
- ; b) $\frac{9\pi}{11}$
- ; c) $-\frac{9\pi}{11}$
- 2) Si $(\widehat{\vec{u}}, \widehat{\vec{v}}) = \frac{\pi}{5} + 2k\pi$; $k \in \mathbb{Z}$, alors $(-2\widehat{\vec{v}}, 3\widehat{\vec{u}})$ est égale à :
 - a) $\frac{4\pi}{5} + 2k\pi$; $k \in \mathbb{Z}$ $(b) \frac{4\pi}{5} + 2k\pi$; $k \in \mathbb{Z}$ $(c) \frac{\pi}{5} + 2k\pi$; $k \in \mathbb{Z}$ (d)
- 3) Soit *x* un réel, $\cos\left(x + \frac{5\pi}{4}\right)$ est égale à :
 - a) $-\sin\left(x + \frac{\pi}{4}\right)$; b) $\cos\left(x \frac{\pi}{4}\right)$; c) $-\cos\left(x + \frac{\pi}{4}\right)$
- 4) Soit la fonction $f(x) = \frac{\sqrt{4+x}-2}{x}$, alors $\lim_{x\to 0} f(x)$ est égale à :
 - a) 0
- $; b) + \infty \bigcap$
- ; c) $\frac{1}{4}$

Exercice N°2:

- Soit la fonction f définie sur IR par $f(x) = \frac{2-x^2}{x^2+1}$ I-
- 1) Montrer que f est une fonction paire.
- 2) a) Vérifier que pour tout $x \in IR$ on a $f(x) = \frac{3}{x^2+1} 1$.
 - b) Calculer $\lim_{x \to +\infty} f(x)$
 - c) Montrer que f est décroissante sur $[0; +\infty[$ puis déduire le sens de variation de f sur $]-\infty$; 0].
- 3) a) Montrer que f est minorée par (-1) et majorée par 2.
 - b) Montre que 2 est un maximum absolu de f.
- 4) On donne dans (<u>l'annexe 1</u>) la courbe (φ_f) de la restriction de f sur $[0; +\infty[$
 - a) Compléter le traçage de la courbe (φ_f) .
 - b) Déterminer graphiquement, suivant le réel m, le nombre des solutions de l'équation f(x) = m.

Soit la fonction g définie sur IR par g(x) = |2 + x| - |x|II-

- 1) Montrer que g est une fonction affine par intervalles.
- 2) Tracer la courbe (φ_g) représentation graphique de g sur $(\underline{l'annexe\ 1})$.
- 3) Résoudre graphiquement :
 - a) f(x) = g(x).
 - b) f(x) < g(x).

Exercice N°3:

(6 points)

Soit
$$f$$
 la fonction définie par :
$$\begin{cases} f(x) = \frac{x^2 - 1}{2x^2 + 4x - 6} & \text{si } x < 1 \\ f(x) = \frac{\sqrt{x + 3} - 2}{x - 1} & \text{si } x > 1 \end{cases}$$

On désigne par (φ_f) la courbe représentative de f dans un repère orthonormé $(0; \vec{i}; \vec{j}).$

- 1) Déterminer le domaine de définition de f.
- 2) Calculer $\lim_{x \to -\infty} f(x)$ et $\lim_{x \to +\infty} f(x)$. 3) a) Calculer $\lim_{x \to 1^{-}} f(x)$.
- - b) Montrer que pour tout x > 1, on a : $f(x) = \frac{1}{\sqrt{x+3}+2}$
 - c) la fonction f admet-elle une limite en 1 ?Justifier.
 - 4) a) Calculer $\lim_{x \to -3^-} f(x)$ et $\lim_{x \to -3^+} f(x)$. b) Interpréter graphiquement les résultats.

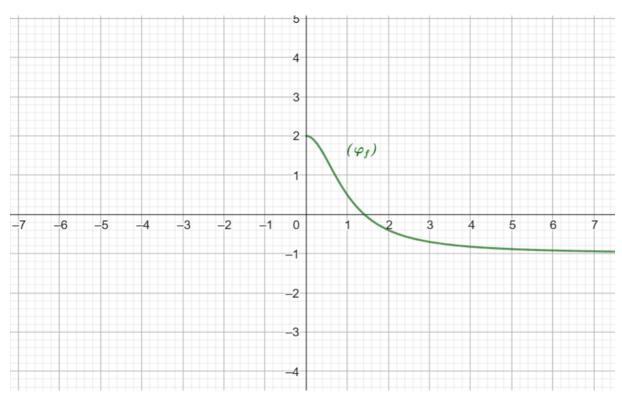
Exercice N°4:

Dans le plan orienté \mathcal{P} , on considère le triangle équilatéral dans le sens direct ABC .voir (annexe 2, à compléter au fur et à mesure).

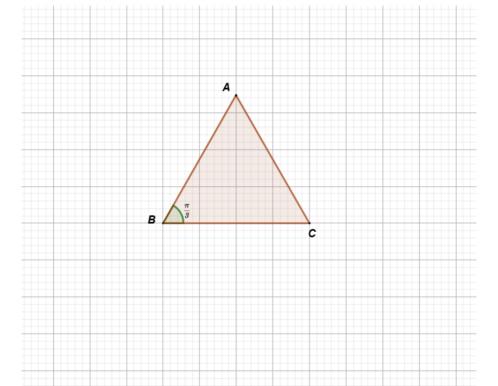
- 1) Soit E un point de \mathscr{P} vérifiant $(\overrightarrow{AC}; \overrightarrow{AE}) = \frac{37\pi}{6} + 2k\pi; k \in \mathbb{Z}$.
- a) $-\frac{37\pi}{6}$ est-elle une mesure de $(\overrightarrow{AC}; \overrightarrow{AE})$? Justifier.
- b) Déterminer une mesure principale de $(\overrightarrow{AC} : \overrightarrow{AE})$.
- c) Construire le point E sachant que AE = AC.
- d) Montrer que $(\overrightarrow{CE}; \overrightarrow{CA}) = \frac{5\pi}{12} + 2k\pi$; $k \in \mathbb{Z}$.
- 2) Montrer que les droites (AB)et (AE) sont perpendiculaires.
- 3) a) Construire le point D vérifiant $(\overrightarrow{BC}; \overrightarrow{BD}) = -\frac{\pi}{2} + 2k\pi$; $k \in \mathbb{Z}$ et tel que BD = BC.
- c) En déduire que les points C, D et E sont alignés.

Copie à rendre

Nom:.....Classe:......



annexe 1



annexe 2