Lycée: 02 Mars 1934 Sousse

Prof: Maatallah

Devoir de contrôle n 1

3 Tech 1 Durée 2h

Exercice n 1 (4 points)

Pour chaque question, une seule réponse est correcte. Aucune justification n'est demandée.

- Si $\widehat{(\vec{u},\vec{v})} = \frac{5\pi}{6} + 2k\pi$ alors $\widehat{(-2\vec{v},3\vec{u})}$ est égale à :
 - $\boxed{\mathbf{a}} \quad -\frac{5\pi}{6} + 2k\pi \; ; \; k \in \mathbb{Z}$
- $\boxed{\mathbf{b}} \quad -\frac{\pi}{6} + 2k\pi \; ; \; k \in \mathbb{Z}$
- \mathbf{c} $\frac{\pi}{6} + 2k\pi$; $k \in \mathbb{Z}$
- Si $f(x) = \sqrt{x^2 4} + \sqrt{1 + x}$, alors l'ensemble de définition de f est :
- **b** $]-\infty,2]$ **c**]-1,2]
- Si $\vec{u}, \vec{v}, \vec{w}$ sont trois vecteurs du plan tels que $\widehat{(\vec{u}, \vec{v})} = -\frac{31\pi}{6} + 2k\pi$ et $\widehat{(\vec{w}, \vec{v})} = \frac{59\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$, alors :
 - $\vec{\mathbf{a}} \quad \vec{u} \perp \vec{w}$
- $\vec{u} = \vec{v}$
- $\vec{\mathbf{c}}$ \vec{u} , et \vec{w} sont colinéaires
- Soit $f(x) = \frac{x^2 + x 6}{2x 4}$ et $g(x) = \frac{\sqrt{3 x} 1}{x 2}$ alors :

 - **a** $2\lim_{x\to 2} f(x) + 5\lim_{x\to 2} g(x) = 0$ **b** $5\lim_{x\to 2} f(x) + 2\lim_{x\to 2} g(x) = 0$ **c** $\lim_{x\to 2} f(x) + 5\lim_{x\to 2} g(x) = 0$

Exercice n 2 (5 points)

ABC est un triangle isocèle de sommet principal A tels que : $(\overrightarrow{BC},\overrightarrow{BA}) = \frac{77\pi}{12} + 2k\pi$ et AB = 4 cm .

- Déterminer la mesure principale de $(\overrightarrow{BC}, \overrightarrow{BA})$.
- Justifier que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{6} + 2k\pi$, $k \in \mathbb{Z}$ puis faire une figure.
- Soit D le point tel que :

$$\begin{cases} (\overrightarrow{AB}, \overrightarrow{AD}) = -\frac{65\pi}{6} + 2k\pi, & k \in \mathbb{Z} \\ AD = AB \end{cases}$$

- **a** Déterminer la mesure principale de l'angle $(\overrightarrow{AB}, \overrightarrow{AD})$.
- **b** En déduire que A est le milieu du segment [DC].
- Montrer que (BC) et (BD) sont perpendiculaires.
- Déterminer toutes les mesures de l'angle $(\overrightarrow{AB}; \overrightarrow{AD})$ comprises entre -3π et 2π .

Exercice n 3 (7 points)

Soit g la fonction définie par $g(x) = \frac{\sqrt{x+3}-2}{x-1}$. Soit C_g la courbe de g dans un repère orthonormé.

- Déterminer l'ensemble de définition de g.
 - **b** Calculer $\lim_{x \to +\infty} g(x)$. Interpréter graphiquement le résultat obtenu.
- **a** Vérifier que pour tout $x \in D_g$, on a : $g(x) = \frac{1}{2+\sqrt{x+3}}$.
 - Étudier alors le sens de variation de q.
 - **c** Montrer que pour tout $x \in D_g$, $g(x) \leq \frac{1}{2}$. Déduire que g(x) est bornée.

3 Soit la fonction f définie par :

$$f(x) = \begin{cases} \sqrt{x^2 + 1} - x + \frac{1}{2}, & \text{si } x \le -4, \\ \frac{x^2 - x - 12}{x + 3}, & \text{si } -4 < x \le -3, \\ \frac{\sqrt{x + 3} - 2}{x - 1}, & \text{si } x \ge -3. \end{cases}$$

Soit C_f sa courbe dans le même repère orthonormé.

- **a** Montrer que f est définie sur $]-\infty,-4]\cup]-4,-3[\cup([-3,+\infty[\setminus\{1\}).$
- **b** Calculer $\lim_{x \to -\infty} f(x)$ et montrer que $\lim_{x \to -\infty} \left(f(x) + 2x \frac{1}{2} \right) = 0$.
- c Interpréter graphiquement le résultat.
- **d** Calculer $\lim_{x\to 1} f(x)$ et comparer $\lim_{x\to -3^-} f(x)$ et f(-3).

Exercice n 4 (4 points)

Le graphique ci-contre reprèsente la courbe (\mathscr{C}_f) d'une fonction f dans un repère orthonormé $\left(\overrightarrow{O} ; \overrightarrow{i}, \overrightarrow{j} \right)$. (\mathscr{C}_f) admet une branche infinie de direction $(\overrightarrow{O}, \overrightarrow{j})$

- 1 Déterminer le domaine de définition de f .
- 2 a Etudier $\lim_{x\to 0} f(x)$ et $\lim_{x\to -\infty} \frac{f(x)}{x}$. La justification est exigée .
 - **b** Déterminer les réels a et b tels que : $\lim_{x \to +\infty} f(x) (ax + b) = 0$
- \bigcirc Donner le tableau de variation de f

