3 ème Sciences

M^{me} Sakka M^r Wesslati M^r Trabelsi

Mathématiques Durée : 2heures

EXERCICE 1 (6 points)

07/11/2023

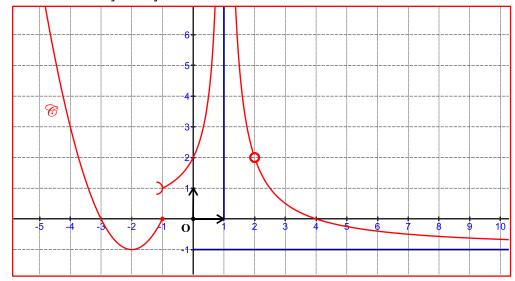
Dans le graphique ci-dessous, on a tracé, dans un repère orthonormé, la courbe \mathscr{C} représentative d'une fonction f. On admet que \mathscr{C} possède deux asymptotes d'équations : x = 1 et y = -1.

Répondre aux questions suivantes à l'aide d'une lecture graphique.

- 1) a) Préciser l'ensemble de définition de f.
 - b) Préciser les intervalles sur lesquels f est continue.
 - c) Déterminer : $f(]-\infty,-1]$), f([-3,-1]), f([-1,1[)]) et $f(]2,+\infty[)$.
 - d) Déterminer l'ensemble des valeurs m pour lesquelles l'équation f(x) = m admet deux solutions.
 - e) Montrer que l'équation $f(x) = \frac{1}{x^2}$ admet au moins une solution dans [-4, -3].
 - f) Résoudre l'équation E(f(x)) + 1 = 0; E désigne la fonction partie entière .
- 2) Soit g la fonction définie par $g(x) = \frac{1}{f(x)}$.
 - a) Préciser l'ensemble de définition de g.
 - b) Prouver que g est bornée sur]-1,1[.
- 3) On considère h la restriction de f à l'intervalle $]-\infty;-1]$ et on désigne par \mathcal{C}_h sa représentation graphique dans le même repère .

On admet que \mathcal{C}_{ℓ} est une partie d'une parabole. Soit A(1,1) et M un point de la courbe \mathcal{C}_{ℓ} .

- a) Vérifier que $h(x) = x^2 + 4x + 3$ pour tout réel $x \le -1$.
- b) Déduire les valeurs de x, de $]-\infty,-1]$, pour lesquelles OAM est un triangle rectangle en O.



EXERCICE 2 (6 points)

On considère la fonction f définie sur \mathbb{R} par $f(x) = \sqrt{x^2 + 1} - x$.

On désigne par (C_f) sa représentation graphique dans un repère orthonormé $(0,\vec{\imath},\vec{j})$.

- 1) Vérifier que pour tout réel x > 0 on a : $f(x) = \frac{1}{\sqrt{x^2 + 1} + x}$.
- 2) a) Montrer que f est minorée par 0.
 - b) Interpréter graphiquement le résultat précèdent.
- 3) a) Étudier la position relative de (C_f) par rapport à la droite $\Delta : y = -x + 1$.

On précisera les coordonnées du point A de leur intersection.

- b) En déduire que pour tout M > 0 on a : f(-E(M)) > M . (E(M) désigne la partie entière de M)
- c) Déduire que f n'est pas majorée sur $]-\infty,0]$.
- 4) a) Montrer que f est décroissante sur \mathbb{R} .

(On pourra étudier le sens de variation sur $]-\infty,0]$ et sur $[0,+\infty[$ séparément).

- b) Déduire que $\sqrt{5} 2$ est le maximum de f sur $[2, +\infty[$.
- 5) On a construit dans l'annexe fournie (figure 1), la représentation graphique (C_g) de la fonction g définie sur \mathbb{R} par : $g(x) = -x \sqrt{x^2 + 1}$.
 - a) Préciser par quelle transformation géométrique obtient-on la courbe (C_f) à partir de la courbe (C_g) .
 - b) Déduire la construction de la courbe (C_f) .

EXERCICE 3 (8 points)

Soit ABC un triangle équilatéral de coté a > 1 (figure 2).

On considère le point D défini par : $2\overrightarrow{DA} - 2\overrightarrow{DB} - \overrightarrow{DC} = \overrightarrow{0}$.

- 1) a) Calculer $\overrightarrow{BA} \cdot \overrightarrow{BC}$ en fonction du réel a.
 - b) Montrer que $\overrightarrow{DC} = 2\overrightarrow{BA}$ et placer D
 - c) Montrer que les droites (BD) et (BC) sont perpendiculaires.
 - d) Déterminer l'ensemble (E_1) des points M du plan tels que $|\overrightarrow{AB} \cdot \overrightarrow{MC}| = a \times MC$
- 2) Soit f l'application du plan dans $\mathbb R$ qui à tout point M du plan associe le réel

$$f(M) = 2MA^2 - 2MB^2 - MC^2$$

- a) Vérifier que f(C) = 0.
- b) Montrer que $AD = a\sqrt{7}$
- c) Montrer que $f(M) = 4a^2 MD^2$.
- d) En déduire l'ensemble (E) des points M du plan tels que f(M) = 0
- 3) Le cercle (C) de centre D passant par C, coupe (BC) en un point I distinct de C.

Montrer que le triangle CDI est équilatéral.

- 4) La droite perpendiculaire à (DC) en D coupe le cercle (*C*) en un point E tels que E et I soient dans le même demi-plan de frontière (DC).
 - a) Montrer que $\overrightarrow{CE} \cdot \overrightarrow{CI} = 2a^2(1 + \sqrt{3})$
 - b) Déduire la valeur exacte de $Cos\left(\frac{\pi}{12}\right)$

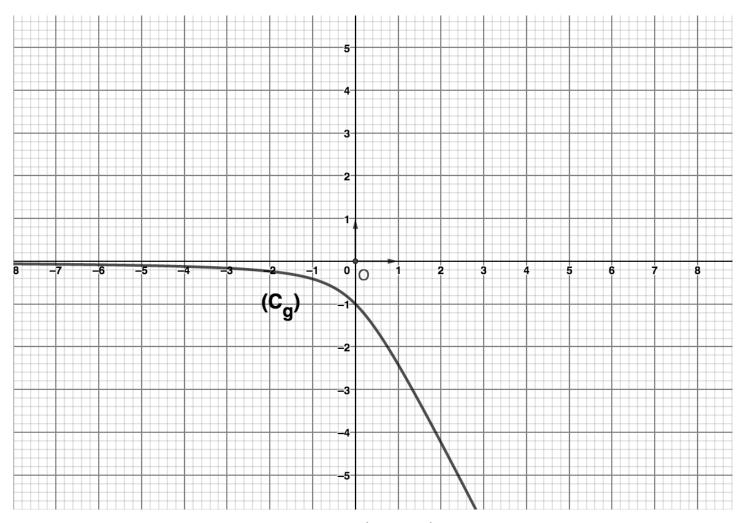


Figure 1 (Exercice 2)

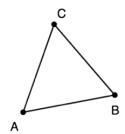


Figure 2 (Exercice 3)