Lycée Othman Chatti M'saken	Devoir de Contrôle N°1 math	9/11/2024
Prof: Sabbagh Hamza	3eme science expérimentales	durée:2h

Exercice 1

- 1) Soit h la fonction définie par : $h(x) = \frac{x}{x^2 + |x| + 1}$
 - a) Déterminer l'ensemble de définition de h et étudier sa parité.
 - b) Montrer que h est majorée par 1.
 - c) En déduire que h est bornée sur \mathbb{R} .
- 2) Soit g la fonction définie par : $g(x) = \frac{\sqrt{3x-2}-2}{3x-6}$
 - a) Déterminer l'ensemble de définition D_g de g.
 - b) Vérifier que pour tout $x \in D_g$, on a : $g(x) = \frac{1}{\sqrt{3x-2}+2}$
 - c) En déduire que g est prolongeable par continuité en 2 et définir son prolongement G.
 - d) Montrer que g est bornée sur son domaine
 - e) $\frac{1}{2}$ est-il le maximum de g ?
- 3) Soit f la fonction définie sur \mathbb{R} par : $f(x) = \begin{cases} h(x) & \text{si } x < 1 \\ g(x) & \text{si } 1 \le x < 2 \\ \sqrt{x^2 4} + mx & \text{si } x \ge 2 \end{cases}$
 - a) Montrer que f est continue en 1.
 - b) Déterminer la valeur de m pour que f soit continue en 2.
 - c) Montrer que l'équation (E): $x^4 x^3 1 = 0$ admet au moins une solution α dans]-1, 0[.
 - d) Montrer que $g(\alpha) = \alpha^2 1$

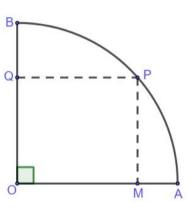
Exercice 2

On considère un quart de cercle de centre O et de rayon 1 et M un point variable sur le segment [OA] distinct de O et A. On note OM = x.

- 1) Soit l'aire S(x) du rectangle *OMPQ*. Montrer que $S(x) = x\sqrt{1-x^2}$
- 2) On désigne par S la fonction qui à x associe S(x).
 - a) Quel est l'ensemble de définition de S.

http://mathematiques.kooli.me/

- b) Donner un majorant et un minorant de S.
- 3) a) Montrer que pour tout réel x; $4x^2(1-x^2) \le 1$
 - b) En déduire que S est majorée par $\frac{1}{2}$
- 4) a) Pour quelle valeur de x, le quadrilatère OMPQ est un carré?
 - b) Montrer que la fonction S admet un maximum en cette valeur.



Exercice 3

Étant donné un quadrilatère ABCD. On se propose de déterminer l'ensemble Δ des points M du plan vérifiant la propriété : \overrightarrow{MA} . $\overrightarrow{MC} = \overrightarrow{MB}$. \overrightarrow{MD}

On désigne par I et J les milieux respectifs des diagonales [AC] et [BD].

- 1) Montrer l'équivalence $M \in \Delta$ si et seulement si $MI^2 MJ^2 = AI^2 BJ^2$:
- 2) En déduire l'ensemble Δ dans chacun des cas suivants :
 - a) ABCD est un rectangle
 - b) ABCD est un parallélogramme non rectangle.
- 3) Dans cette question, ABCD n'est pas un parallélogramme, Soit O le milieu de [IJ].
- a) Montrer que, pour tout point M du plan, on a : $MI^2 MJ^2 + 2\overrightarrow{IJ}$. \overrightarrow{OH} où M est le projeté orthogonal de M sur (IJ).
 - b) On pose $k=AI^2-BJ^2$ ($k\in\mathbb{R}$). Déduire de ce qui précède que : $M\in\Delta\Leftrightarrow\left(\pmb{O}H=\frac{|k|}{2IJ}\right)$
- 4) ABCD est toujours n'est pas un parallélogramme, et on suppose en outre que les sommets A, B, C et D sont situés sur un cercle Γ de centre Ω et de rayon R et que (AC) et (BD) se coupent en E.
 - a) Montrer que : \overrightarrow{EA} . $\overrightarrow{EC} = \overrightarrow{EA}$. $\overrightarrow{EA'}$, où A' est le point diamétralement opposé à A sur Γ
 - b) En déduire que : \overrightarrow{EA} . $\overrightarrow{EC} = \Omega E^2 R^2$
 - c) Montrer que $E \in \Delta$ puis construire Δ .