

Exercice 1 (4 points)

Soient f et g deux fonctions définies sur \mathbb{R} par : $f(x) = \frac{|x|}{2 + x^2}$ et $g(x) = \frac{|x|}{1 + 2|x|}$

- 1) Montrer que f est une fonction paire . Interpréter graphiquement .
- a Montrer que pour tout réel x, on a : $2|x| \le x^2 + 1$.
 - b En déduire que pour tout réel x, on a : $f(x) \le g(x)$.
- a Prouver que g est majorée par $\frac{1}{2}$ sur \mathbb{R} .
 - **b** En déduire que f est bornée sur \mathbb{R} .

*

Exercice 2 (5 points)

Dans l'annexe ci-jointe (Figure 1), on a tracé la courbe Γ représentative d'une fonction f dans un repère orthonormé $\left(0,\overrightarrow{i},\overrightarrow{j}\right)$.

- (A) Par une lecture graphique :
 - 1 Répondre par VRAI ou FAUX sans justification .
 - f est définie sur $\mathbb{R} \setminus \{2\}$.
 - b f est continue à gauche en 2 .

 - d f est continue en (-3).
 - 2 Déterminer : $f(]-\infty,2[)$ et $f([2,+\infty[)$.
 - \bigcirc Déterminer les intervalles de $\mathbb R$ où f est continue .
- **(B)** Soit g la fonction définie sur \mathbb{R} par : $g(x) = \begin{cases} -f(x) & \text{si } x \in]-\infty, 2[\\ f(x) & \text{si } x \in [2, +\infty[\end{cases}$.
 - 1 Tracer la courbe représentative de g noté \mathscr{C}_g dans le même repère $(0, \overrightarrow{i}, \overrightarrow{j})$.
 - Par une lecture graphique :
 - lacksquare La fonction g est-elle continue sur \mathbb{R} ? justifier .
 - b Donner le signe de g(x), pour tout $x \in \mathbb{R}$.
 - $lue{c}$ Dresser le tableau de variation de g sur \mathbb{R} .

Exercice 3 (5 points)

Soit g la fonction définie par : $g(x) = \sqrt{x-1} - \frac{2}{x-1}$.

- 1 Déterminer l'ensemble de définition de g noté D_g .
- 2 Prouver que g est strictement croissante sur l'intervalle $]1, +\infty[$.
 - b Montrer que g est continue sur l'intervalle $]1, +\infty[$.
 - \bigcirc Déterminer : g([2,5]).
- a Montrer que l'équation g(x) = 0 admet dans l'intervalle]2, 3[une unique solution β .
 - b Donner un encadrement de β d'amplitude 0, 1
 - C Justifier que $\beta = 1 + \frac{4}{(\beta 1)^2}$.
 - d Donner le signe de g(x), pour tout $x \in]1, +\infty[$.

Exercice 4 (6 points)

Dans l'annexe ci-jointe (Figure 2) :

- ABC est un triangle tels que : AB = 6, AC = 8 et $\widehat{BAC} = \frac{\pi}{3}$.
- G est un point du segment [AB] tel que : $\overrightarrow{AG} = \frac{1}{3}\overrightarrow{AB}$.
- H est le projeté orthogonal de B sur la droite (AC).
 - 1 a Montrer que : $\overrightarrow{AG} \cdot \overrightarrow{AC} = 8$ puis déduire que $GC = 2\sqrt{13}$.
 - Prouver que : AH = 3.
 - 2 Soit l'ensemble $\mathscr{C} = \{ M \in P / 2MA^2 + MB^2 = 180 \}.$
 - a Justifier que G est le barycentre des points pondérés (A, 2) et (B, 1).
 - b Montrer que pour tout point M du plan, on a : $2MA^2 + MB^2 = 3MG^2 + 24$.
 - lacksquare Déterminer l'ensemble \mathscr{C} .
 - 3 Soit *I* le milieu du segment [BC] et on note l'ensemble $\Delta = \{M \in P/MB^2 MC^2 = -36\}$.
 - a Montrer que pour tout point M du plan, on a : $MB^2 MC^2 = 2\overrightarrow{BC} \cdot \overrightarrow{IM}$.
 - **b** En déduire que $\overrightarrow{BC} \cdot \overrightarrow{IG} = -18$.
 - C Déterminer et construire l'ensemble Δ.

Annexe : à rendre avec la copie

Nom et Prénom :

Figure 1:

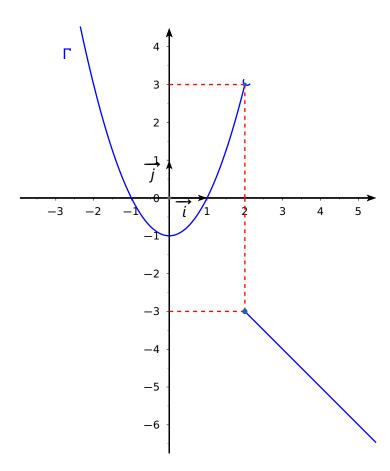


Figure 2:

