LYCEE KAIREDDINE JANOURA -

MATHEMATIOUES

2021/2022

DEVOIR DE CONTROLE N°1

Date: 13/11/2021

Classe :3^{ème} Sciences

Exercice n°1 6 Points

I/ Dans la figure ci contre ξ est un cercle de centre O et de rayon r et M un point non situé sur

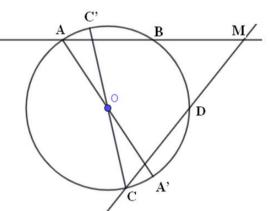
ξ deux droites issues de M coupent ξ respectivement en A et B, et en C et D.

On note A' et C' les points diamétralement opposés respectivement à A et à C sur le cercle ξ.

1°/ Démontrer que

$$\overrightarrow{MA}.\overrightarrow{MA'} = \overrightarrow{MA}.\overrightarrow{MB}$$
 et $\overrightarrow{MC}.\overrightarrow{MC'} = \overrightarrow{MC}.\overrightarrow{MD}$

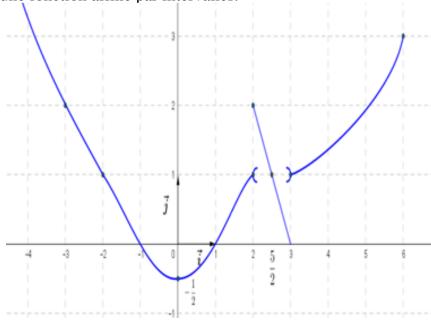
- 2° / Démontrer que \overrightarrow{MA} . $\overrightarrow{MA'} = \overrightarrow{MC}$. $\overrightarrow{MC'} = MO^2 r^2$
- 3° / En déduire que \overrightarrow{MA} . $\overrightarrow{MB} = \overrightarrow{MC}$. \overrightarrow{MD}



II/ La courbe ci-dessous est celle d'une fonction f définie sur $]-\infty,6]$

- 1°/a) f est elle continue en 2 et en 3 ? Justifier
 - b) Donner les intervalles sur les quels f est continue.
- 2° / Déterminer f([-2,2[), f([2,6]) et f]- ∞ ,2[
- 3°/ Soit h la fonction définie sur]2, 5] par h(x) = x + E(f(x))

Montrer que h est une fonction affine par intervalles.

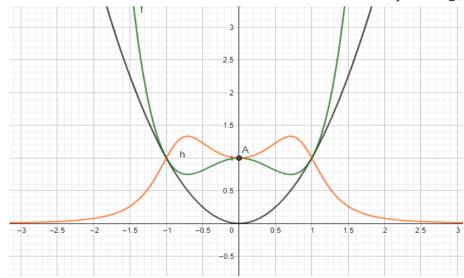


Exercice n°2 8 Points

Soit la fonction définie sur IR par $f(x) = x^4 - x^2 + 1$

et & sa courbe représentative dans un repère orthonormé R

- 1°/ Montrer que f est une fonction paire .
- $2^{\circ}/a$) Montrer que pour tout réel x, $f(x) = (x^2 \frac{1}{2})^2 + \frac{3}{4}$
 - b) Déterminer alors le minimum de f sur $\mathbb R$.Pour quelles valeurs est-il atteint ?
 - c) En déduire alors que tout réel x , $x^4 \ge x^2 \frac{1}{4}$
 - d) Déterminer le sens de variation de f sur chacun des intervalles $\left[0, \frac{1}{\sqrt{2}}\right]$ et $\left[\frac{1}{\sqrt{2}}, +\infty\right[$
 - e) En utilisant la parité de f , déterminer les variations de f sur $\left] -\infty, -\frac{1}{\sqrt{2}} \right]$ et $\left[-\frac{1}{\sqrt{2}}, 0 \right]$
- 3°/Justifier que 1est un maximum de f sur [-1,1]
- 4° / Soit g la fonction définie $g(x) = \frac{1}{f(x)}$
- a) Montrer que g est bien définie sur IR
- b) Déterminer le sens de variation de g sur IR (utiliser les variations de f)
- 5° / D'après la question (1) justifier que $\frac{4}{3}$ est le maximum de g sur IR .
- 6°/ Montrer que l'équation $g(x) = \frac{1}{2}$ admet au moins deux solutions dans [1,2] et [-2,-1]
- 7°/ On a tracé dans le repère orthonormé R les courbes \mathscr{C}_g et \mathscr{C}_f , et la parabole P d'équation: $y=x^2$.
 - a) Resoudre graphiquement g(x) < f(x) et E(g(x) = 0)
 - b) Discuter suivant les valeurs du réel m le nombre de solutions de l'équation g(x) = m



8°/ On note A le point de coordonnées (0 ; 1) et M le point de P d'abscisse x. Trouver les positions éventuelles de M sur P pour lesquelles la distance AM est minimale

Exercice n°3 6 Points

On considère dans le plan P un triangle ABC tel que AB = 7; $AC = 3\sqrt{2}$ et BC = 5.

1°/a) Montrer que $BC^2 = BA^2 + AC^2 - 2\overrightarrow{AB}.\overrightarrow{AC}$

b) Calculer alors $\overrightarrow{AB}.\overrightarrow{AC}$ et en déduire la mesure de l'angle BAC

2°/Soit H le projeté orthogonal de C sur la droite (AB)

a) Montrer que AH = 3

b) Montrer que H est le barycentre des points pondérés (A, 4) et (B, 3)

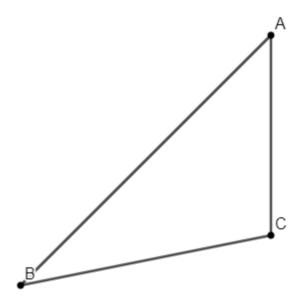
c) Montrer que pour tout point M du plan P on a : $4MA^2 + 3MB^2 = 7MH^2 + 84$

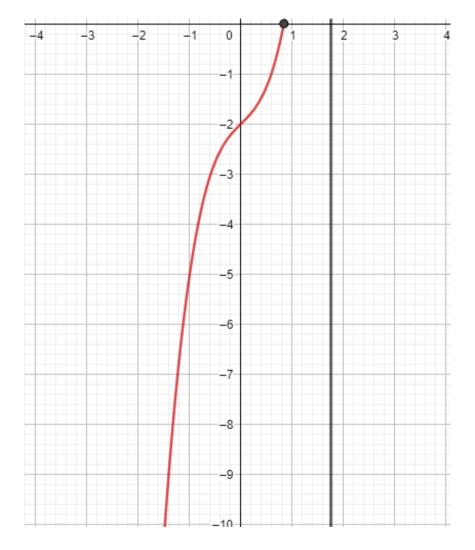
d) En déduire l'ensemble \mathscr{C} des points M de P tels que $4MA^2 + 3MB^2 = 112$

 3° / Soit Γ l'ensemble des points M de P tels que $\overrightarrow{BA} \cdot \overrightarrow{BM} = 28$

a) Vérifier que le point C appartient à Γ

b) En déduire l'ensemble Γ





4