### LYCEE ELHICHRIA

 $\diamond \diamond \diamond \diamond$ 

### DEVOIR DE CONTROLE N°1 MATHÈMATIQUES

Durée: 2H

Date: 05/11/2024

**SECTION**: 3<sup>ème</sup> Sc

PROF: Mr Aloui Fethi

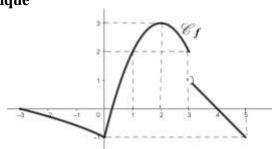
NB: Le sujet comporte 2 pages

## Exercice $n^01:(\overline{4,5 \text{ pts}})$

On donne ci-dessous la représentation graphique dans un repère orthonormé  $(O, \vec{i}, \vec{j})$ .

d'une fonction f définie sur [-3, 5]

## Par lecture graphique



- 1) a/Donner le maximum et le minimum de f sur [-3, 5]
  - b/ Décrire les variations de f sur [0, 3]
- 2) a/f est-elle continue en 3? Justifier
  - b/ Sur quels intervalles f est—elle continue?
  - c/ En déduire que la fonction g :  $x \mapsto \left| \frac{x}{x+5} \right|$  f(x) est continue sur [0, 3]
  - d/ Déterminer l'image par f de chacun des intervalles [-3,3] et ]3,5]
- 3) Soit  $h(x) = \sqrt{f(x) 2}$ 
  - a/ Déterminer l'ensemble de définition de h
  - b/ Montrer que h est continue sur [1, 3]

# Exercice n<sup>0</sup>2 : (6 pts)

Soit f la fonction définie sur IR par :  $f(x) = \frac{1-x^2}{1+x^2}$ .

On désigne par & la courbe de f dans un repère orthonormé

- 1) Etudier la parité de f.
- 2) a/Montrer que  $\forall x \in IR$ , on a :  $f(x) = -1 + \frac{2}{1 + x^2}$ 
  - b/ Montrer que f est décroissante sur  $[0,+\infty[$
  - c/Montrer que f est minorée par (-1) et majorée par 1 sur  $[0,+\infty[$
  - d/-1 est il un minimum de f sur  $[0,+\infty[$ ?
- 3) Montrer que f est continue sur IR
- 4) Soit g la fonction définie par :  $g(x) = 3x^2 3 + \sqrt{x}(x^2 + 1)$ 
  - a/ Déterminer  $D_g$  l'ensemble de définition de g
  - b/ Montrer que g est continue sur  $[0,+\infty[$
  - c/ Montrer que g est strictement croissante sur  $[0,+\infty[$
  - d/Montrer que l'équation g(x)=0 admet une unique solution  $\alpha$  dans ]0,7; 0,8[
  - e/ En déduire le signe de g(x) sur  $[0, +\infty[$
  - f/ Montrer que  $f(\alpha) = \frac{\sqrt{\alpha}}{3}$

## Exercice n<sup>0</sup>3:(4,5 pts)

Dans un plan P, on considère un triangle ABC tel que : AB = 2 et AC = 3 et  $\widehat{BAC} = \frac{\pi}{3}$ 

- 1) Calculer  $\overrightarrow{AB}$ .  $\overrightarrow{AC}$  et déduire que :  $BC = \sqrt{7}$ .
- 2) Soit D le point du plan P tel que :  $\overrightarrow{AD} = \overrightarrow{AC} 2\overrightarrow{AB}$ .

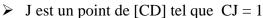
Montrer que : AD =  $\sqrt{13}$ .

- 3) Soit E le point du plan P tel que :  $\overrightarrow{AE} = \frac{1}{3} \overrightarrow{AC}$ 
  - a/ Montrer que :  $\overrightarrow{EA} \cdot \overrightarrow{AD} = -1$
  - b/ Calculer  $\overrightarrow{EA}$ .  $\overrightarrow{ED}$ . Que peut-on conclure?
- 4) a/ Soit I le milieu du segment [BC]Montrer pour tout point M du plan on a :  $MB^2 + MC^2 = 2MI^2 + \frac{7}{2}$ b/ Déterminer l'ensemble des points M du plan tel que  $MB^2 + MC^2 = \frac{23}{2}$

# Exercice n<sup>0</sup>4:(5pts)

ABCD un carré comme indique la figure ci-contre :





 $\triangleright$  K est un point de [BE] tel que EK = 1

> I est un point de [BC) tel que CI = 1

1) a/Montrer que :  $\overrightarrow{AD}$ .  $\overrightarrow{AK} = -6$  et  $\overrightarrow{DJ}$ .  $\overrightarrow{AK} = 6$ 

b/ En déduire que (AJ)  $\perp$  (AK).

2) a/Calculer KD et KJ.

b/ Montrer que  $\overrightarrow{KJ}.\overrightarrow{KD} = 28$ .

c/ En déduire  $cos(D\hat{K}J)$ 

3) On considère le repère orthonormé  $(C, \overrightarrow{CI}, \overrightarrow{CJ})$ 

a/ Déterminer les cordonnées des points A, K et J dans le repère  $(C, \overrightarrow{CI}, \overrightarrow{CJ})$ 

b/ Remontrer que les droites (AJ) et (AK) sont perpendiculaires

