Lycée: 02 mars 1934 Ksar hellal

Année scolaire : 2025/2026

Devoir de contrôle n 1

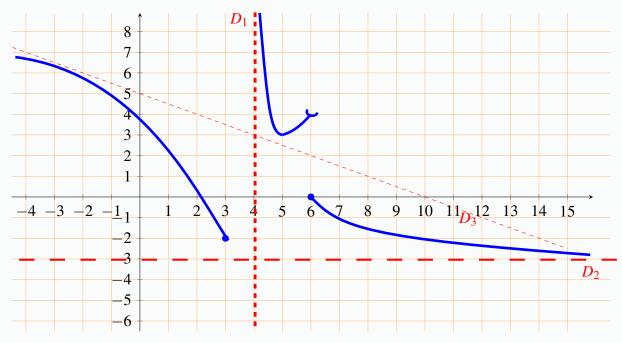
Durée: 2h

Niveau: 3 Sc

Prof: Mem Younes S

Exercice n 1 (8 points)

I/ La courbe $\mathscr C$ d'une fonction f est représentée ci-dessous. Elle admet trois asymptotes D_1,D_2 et D_3 .



- 1) a) Trouver le domaine de définition de f.
 - b) Trouver les équations des asymptotes D_1 et D_2 et montrer que l'équation de la droite D_3 est $y = -\frac{1}{2}x + 5$.
- Trouver les limites suivantes : $\lim_{x \to -\infty} f(x)$; $\lim_{x \to +\infty} f(x)$; $\lim_{x \to 6^+} f(x)$; $\lim_{x \to 6^-} f(x)$ et f(6).
- 3) Calculer: $\lim_{x \to +\infty} \frac{2025}{f(x)+3}$; $\lim_{x \to 6^-} \left(\frac{f(x)-1}{(f(x))^2} \right)$. $\lim_{x \to -\infty} f(x) + \frac{1}{2}x$, $\lim_{x \to -\infty} \frac{x}{f(x) + \frac{1}{2}x 5}$ et $\lim_{x \to +\infty} \frac{(f(x))^2 + 3f(x)}{(f(x))^2 + 2f(x) 3}$.
- 4) Résoudre graphiquement les équations et inéquations suivantes : f(x) = 0 , $f(x) \le 0$, $-3 \le f(x) \le -2$.

II/ Donner la bonne réponse pour chacune des questions suivantes (Sans justifier)

- f est minorée
- b) f est majorée
- c) f est bornée

- 2) a) f est un minimum de f
- b) f est continue à gauche en 6
- c) f est continue à droite en 6
- 3) Soit $h(x) = \frac{1}{\sqrt{f(x)-3}}$ alors le domaine de définition de h est :
 - a) $]-\infty,1]\cup]4,6[$
- b) $]-\infty,1[\cup]4,6[$
- c) $]-\infty,1[\cup]4,6[\setminus\{5\}]$

- 4) f étant la fonction dont la courbe est dessinée dans (I)
 - a) f est continue sur [2,6[b) f est continue sur]- c) f est continue sur]4,6] $\infty,3]$
- 5) Si \overrightarrow{u} et \overrightarrow{v} sont deux vecteurs tels que : $\overrightarrow{u} \begin{pmatrix} f(x) \\ 4 \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} f(x) \\ -1 \end{pmatrix}$ alors
 - a) $\vec{u} \perp \vec{v} \Leftrightarrow x = 3 \text{ ou } x = 8$ b) $\vec{u} \perp \vec{v} \Leftrightarrow x = 3 \text{ ou } x = 8$ c) $\vec{u} \perp \vec{v} \Leftrightarrow x = 0$ ou x = 1.5
- 6) Si $\overrightarrow{AB} \cdot \overrightarrow{CB} = \overrightarrow{AB} \cdot \overrightarrow{CK}$ avec A,B,C,D sont quatre points. Alors :

$$\overrightarrow{AB} \perp \overrightarrow{KD}$$

$$\overrightarrow{CD} = \overrightarrow{CK}$$

Dans le plan muni d'un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, on note A(2,1) et B(1,3) alors on a :

a)
$$\overrightarrow{OA} \cdot \overrightarrow{OB} = 5$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = -OA^2$$

$$\overrightarrow{OA} \cdot \overrightarrow{OB} = -4$$

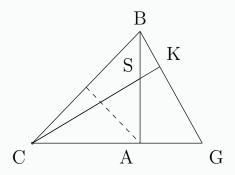
- 8) Soit k la fonction définie par : $k(x) = \frac{x^2 3x + 2}{x^3 8}$, pour $x \in \mathbb{R} \setminus \{2\}$
 - a) k est prolongeable par b) k n'a pas une limite en continuité en k continui

Exercice n 2 (6 points

Dans la figure ci-dessous :

- ABC est un triangle rectangle isocèle en A avec $AB = AC = \sqrt{3}$.
- ASC est rectangle en A tel que $\widehat{ACS} = \frac{\pi}{6}$ (voir figure).
- AG = 1 et $\{K\} = (BG) \cap (CS)$.
- 1) Justifier que $\widehat{BCS} = \frac{\pi}{12}$ et que $CB = \sqrt{6}$.
- 2) a) Montrer que $\overrightarrow{CA} \cdot \overrightarrow{CS} = 3$.
 - b) En déduire que CS = 2 et que AS = 1.
- 3) En calculant $\overrightarrow{AB} \cdot \overrightarrow{AS}$ et $\overrightarrow{AC} \cdot \overrightarrow{AG}$, montrer que $(BG) \perp (CS)$.
- 4) a) Justifier que $CK = \frac{3+\sqrt{3}}{2}$.
 - b) En déduire que $\overrightarrow{CB} \cdot \overrightarrow{CS} = 3 + \sqrt{3}$.
 - c) Montrer alors que $\cos \frac{\pi}{12} = \frac{3+\sqrt{3}}{2\sqrt{6}}$.
- 5) Soit l'ensemble $\mathcal{F} = \{M \in P \text{ tels que } MA^2 + MB^2 = 9\}.$

- a) Vérifier que $C \in \mathscr{F}$.
- b) On pose I = A * B, montrer que \mathscr{F} est un cercle de centre I dont on déterminera le rayon et construire \mathscr{F} .



Exercice n 3 (5 points)

- 1) Soient: $h(x) = \frac{7x^2 1}{x^2 + 2}$ et $g(x) = \sqrt{x^2 + x + 2}$.
 - a) Donner les domaines de définitions de h et de g.
 - b) Montrer que h est majorée par 7.
 - c) 1 est-il un maximum pour h?
- 2) On pose : $f(x) = \begin{cases} \frac{7x^2 1}{x^2 + 2}, & \text{si } x \ge 1\\ \sqrt{x^2 + x + 2}, & \text{si } x < 1 \end{cases}$
 - a) Trouver $\lim_{x\to 1^-} f$, $\lim_{x\to 1^+} f$ et f(1).
 - b) f est-elle continue en 1?
 - c) Montrer que f est continue sur \mathbb{R} .
 - d) Trouver $\lim_{x \to +\infty} f(x)$ et $\lim_{x \to -\infty} f(x)$.
 - e) Calculer $\lim_{x \to -\infty} f(x) x$.