

LYCEE PILOTE DE SOUSSE Le 11/11/2023

Devoir de contrôle nº 1 Mathématiques Niveau :3^{ème}Maths Durée : 2H

Exercice n°1(4,5pts)

Le plan est orienté dans le sens direct

Sur la feuille annexe, ABCD est un losange tels que : AB = $2\sqrt{3}$ et $(\overrightarrow{BA}, \overrightarrow{BC}) \equiv \frac{70\pi}{3} [2\pi]$

- 1) a) Déterminer, en justifiant la mesure principale de l'angle orienté $(\overrightarrow{BA}, \overrightarrow{BC})$
 - b) En déduire que le triangle BCD est équilatéral et de sens direct.
- 2) Soit E le point défini par BE = 2 et $(\widehat{\overrightarrow{BC},\overrightarrow{BE}}) \equiv -\frac{\pi}{6}[2\pi]$
 - a) Vérifier que le triangle BDE est rectangle en B et calculer DE
 - b) Calculer $\cos(\widehat{BDE})$. En déduire une mesure de l'angle orienté $(\overrightarrow{DB}, \overrightarrow{DE})$
 - c) Montrer que les droites (BC) et (DE) sont perpendiculaires.
- 3) Soit I = E * D et $J = S_B(I)$.
 - a) Déterminer la mesure principale de chacun des angles orientés , $(\overrightarrow{BJ}, \overrightarrow{BE})$, $(\overrightarrow{EB}, \overrightarrow{EJ})$ et $(\overrightarrow{BA}, \overrightarrow{BJ})$
 - b) Montrer que EJAD est un rectangle.

Exercice n°2(5,5 pts)

ABCD est un rectangle de centre O, tel que AB = 2a et AD = a, a > 0On désigne par E, F et I les points tels que $\overrightarrow{BE} = \frac{1}{5}\overrightarrow{BA}$, $\overrightarrow{CF} = \frac{1}{5}\overrightarrow{CB}$ et I = E * F

- 1) a) Calculer $\overrightarrow{BE}.\overrightarrow{BD}$ et $\overrightarrow{BF}.\overrightarrow{BD}$
 - b) En déduire que (EF) ⊥ (BD)
- 2) Soit $\{H\} = (EF) \cap (BD)$

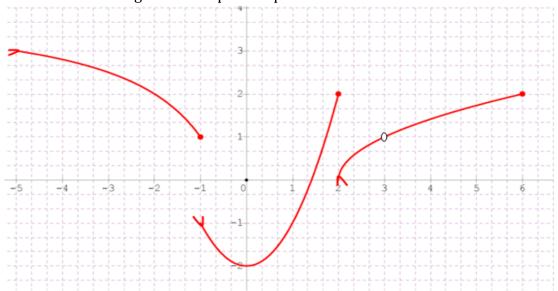
Calculer \overrightarrow{FB} . \overrightarrow{FE} . En déduire que $FH = \frac{8\sqrt{5}}{25}a$

- 3) Soit $\Delta = \{ M \in P \text{ tel que } ME^2 MF^2 = -\frac{12}{25}a^2 \}$
 - a) Vérifier que $B \in \Delta$
 - b) Déterminer alors Δ
- 4) Soit $\Gamma_k = \{ M \in P \text{ tel que } MB^2 + 4MC^2 = k \}$
 - a) Montrer que M $\in \mathbb{F}_k$ si et seulement si : $5 MF^2 + \frac{4}{5} a^2 = k$
 - b) Déterminer suivants les valeurs du réel k, la nature de \mathbb{F}_k
 - c) Déterminer k pour que Δ soit tangente à Γ_k
- 5) Déterminer l'ensemble des points M du plan tel que : $MB^2 + 4MC^2 + 5ME^2 = \frac{16}{5}\alpha^2$

Exercice n°3(4,5pts)

On donne ci-dessous la courbe d'une fonction f sur son domaine de définition dans un repère $(0, \vec{l}, \vec{j})$

- 1) a) Donner le domaine de définition de f
 - b) f est-elle continue à gauche en -1 ? à droite en -1 ?.
 - c) f est-elle prolongeable par continuité en 3?
 - d) Déterminer les intervalles sur les quels f est continue.
- 2) Déterminer f([-1, 1]), f([2, 3[)
- 3) Etudier la continuité de | f | en -1.
- 4) Soit g la fonction définie sur]-5, -1] par g(x) = xE(f(x)), (E est la fonction partie entière)
 - a) Montrer que g est affine par intervalles
 - b) Tracer la courbe de g dans un repère du plan.



Exercice n°4 (5,5pts)

Soit f la fonction définie par $f(x) = \frac{1 - \sqrt{-x^2 + 2x}}{x - 1}$

- 1) a) Déterminer le domaine de définition de f
 - b) Montrer que f est continue sur son domaine.
 - c) Montrer que f est prolongeable par continuité en 1 ? On note F son prolongement
- 2) a) Montrer que $F(x) = \frac{x-1}{1+\sqrt{1-(x-1)^2}}$
 - b) Montrer que F est strictement croissante sur [0, 1].
 - c) Montrer que l'equation $F(x) = -\frac{1}{2}x$ admet dans]0, 1[une unique solution α
 - d) Montrer que α vérifie l'équation : $\alpha^4 2\alpha^3 + 9\alpha^2 12\alpha + 4 = 0$
- 3) Soit g la fonction définie sur IR $\setminus \{-2\}$ par $g(x) = \begin{cases} \frac{x^2 + mx}{|x+1| 1} & \text{si } x < 0 \\ F(x) & \text{si } x \in [0, 2] \\ \frac{x-2}{4(\sqrt{x+2}-2)} & \text{si } x > 2 \end{cases}$
 - a) Étudier la continuité de g à droite et à gauche en 2. Conclure
 - b) Pour quelle valeur de m la fonction g est continue en 0?

