Lycée Pilote Sfax 1 Le 26-10-2022

Classes: 3^{ème} Math

Devoir de contrôle N°1 Mathématiques Durée : 2 heures

Mme: Fakhfakh
Mrs: El arbi, Chakroun,
Jellali et Megdich

Exercice 1(5 points)

Dans l'annexe (I), C_f est la courbe représentative, dans un repère orthonormé (O, \vec{i}, \vec{j}) , d'une fonction f définie sur $[-4,3[\setminus \{-1\}]]$.

- ① Répondre par vrai ou faux en justifiant la réponse.
 - a) La fonction f est croissante sur [-4,1].
 - b) La fonction f n'admet pas de maximum.
 - c) La fonction $x \mapsto f^2(x)$ n'admet pas de limite en -1.
 - d) L'équation $f^2(x) = 4$ admet trois solutions.
- ② Déterminer f(]-1,3[) et f([1,2]).
- $\text{ Soit g la fonction définie sur } \left[-4,3\right] \setminus \left\{-1\right\} \text{ par } \begin{cases} g\left(x\right) = f\left(x\right) & \text{si } x \in \left[-4,-1\right] \cup \left[2,3\right] \\ g\left(x\right) = E\left(x\right) \times f\left(x\right) & \text{si } x \in \left]-1,2\right[\end{cases}$

On désigne par C_g la courbe représentative de g dans le même repère $\left(O,\vec{i},\vec{j}\right)$.

- a) Tracer C_g.
- b) Etudier la limite de g en -1.
- c) Etudier la continuité de g en 1.
- d) Déterminer les réels x tels que g(x) > |x| 1.

Exercice 2 (5 points)

- ① Soit f la fonction définie sur $\mathbb{R} \setminus \{-2,3\}$ par $f(x) = \frac{x |x^2 + 2x| 3(x^2 + 2x)}{x^4 (x+6)^2}$.
 - a) Etudier la limite de f en -2.
 - b) Montrer que f est prolongeable par continuité en 3.
 On désigne par F le prolongement par continuité de f en 3.
 - c) Montrer que F est continue sur $]-2,+\infty[$.
- $\begin{cases} g(x) = \frac{x + \sqrt{2 x}}{3(x + 2)} & \text{si } x \in]-\infty, -2[\\ g(x) = -5F(x) & \text{si } x \in]-2, +\infty[\\ g(-2) = \frac{1}{4} \end{cases}$
 - a) Montrer que g est continue sur \mathbb{R} .
 - b) Montrer que l'équation g(x) = x + 2 admet au moins une solution dans]-3,-1[.

Exercice 3 (4 points)

① Soit f la fonction définie sur \mathbb{R} par $f(x) = -x^2 + 4x - 1$.

On désigne par C_f la courbe représentative de f dans un repère orthonormé (O, \vec{i}, \vec{j}) .

- a) Tracer C_f .
- b) Soit A(2,0) et $\alpha \in (0,3)$.

La droite d'équation $y = \alpha$ coupe C_f en deux points M et N.

On désigne par $\mathcal{A}(\alpha)$ l'aire du triangle AMN.

Déterminer $\mathcal{A}(\alpha)$ en fonction de α .

- ② Soit g la fonction définie sur $]-\infty,3]$ par $g(x)=x\sqrt{3-x}$.
 - a) Montrer que g admet un maximum sur $]-\infty,3]$ en 2.
 - b) Hachurer le triangle AMN lorsque $\mathcal{A}(\alpha)$ est maximale.

Exercice 4 (6 points)

I/ On considère Γ un cercle de centre O et de rayon R.

Soit M un point du plan, une droite D passant par M coupe le cercle Γ en deux points N et P. On désigne par N' le symétrique de N par rapport à O.

- ① Montrer que $\overrightarrow{MN} \cdot \overrightarrow{MP} = \overrightarrow{MN} \cdot \overrightarrow{MN}'$
- ② En déduire que $\overrightarrow{MN} \cdot \overrightarrow{MP} = OM^2 R^2$.
- II/ Dans l'annexe (II), ABCD est un trapèze rectangle en A et D tel que

$$AD = 2$$
, $AB = 2a$ et $DC = a$ $(a > 0)$.

Le point H est le projeté orthogonal de A sur (BD). Le point I est le milieu de [HB].

- ① Calculer en fonction de a les distances AH et BI.
- ② a) Montrer que $\overrightarrow{AI} \cdot \overrightarrow{CI} = \frac{-1}{4} AH^2 + \frac{1}{2} \overrightarrow{AB} \cdot \overrightarrow{DI} a^2$.
 - b) En déduire que les droites (AI) et (CI) sont perpendiculaires.
- ③ On désigne par K le milieu du segment [AC].

Soit \mathscr{C} l'ensemble des points M du plan tels que $MK^2 - MD^2 = \overrightarrow{MK} \cdot \left(\overrightarrow{DM} + \overrightarrow{DK}\right)$.

Montrer que & est le cercle de centre K et de rayon KD.

① Le cercle & recoupe la droite (BC) en F. Déterminer la distance BF.