3ème Maths 1-2

* Devoir de contrôle 1 *

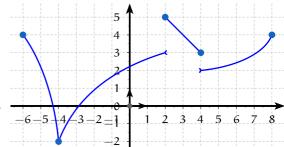
Durée: 2 h *

Profs: 🙇 Habib Haj Salem 🙇 Houcine Yousfi 🖾

Dream big, work hard, make it happen.

Exercice 1 (5 points) Les deux parties 1 et 2 sont indépendantes

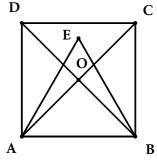
- 1 Répondre par vrai ou faux en justifiant la réponse
 - **a** A, B et C trois points distincts du plan $\|\overrightarrow{AB} + \overrightarrow{AC}\|^2 = (AB + AC)^2$ si et seulement si $A \in (BC) \setminus [BC]$.
 - b Si on a |f| est une fonction continue en a alors f est une fonction continue en a.
 - Si f est une fonction continue et impaire sur [-3,3] tel que f(1) = -1 et f(2) = 1, alors l'équation f(x) = 0 admet au moins trois solutions dans [-3,3].
- 2 On a représenté ci-contre une fonction f définie sur [-6,8]. Déterminer graphiquement :
 - a Les intervalles sur les quels f est continue.
 - b Les images des intervalles [-4,2] et [4,8]
 - Onner un maximum et un minimum de f s'ils existent.
 - d Résoudre graphiquement les équations : E(f(x)) = 4 et $(f(E(x)))^2 - 3f(E(x)) - 10 = 0$.



Exercice 2 (7 points)

Soit ABCD un carré de centre O et de coté 1, on construit à l'intérieur du carré un triangle équilatéral ABE.

- a Calculer $\overrightarrow{AB} \cdot \overrightarrow{AE}$ et $\overrightarrow{AD} \cdot \overrightarrow{AE}$.
 - **b** En déduire la valeur de $\overrightarrow{AC} \cdot \overrightarrow{AE}$.
 - Montrer alors que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{6} + \sqrt{2}}{4}$ et que $OE^2 = 1 \frac{\sqrt{3}}{2}$.
- a Montrer que pour tout point M du plan : $\overrightarrow{MA} \cdot \overrightarrow{MC} = MO^2 \frac{1}{2}$ (2)
 - **b** Déterminer alors l'ensemble $E_1 = \left\{ M \in P / \overrightarrow{MA} \cdot \overrightarrow{MC} = \frac{1}{2} \right\}$



3 Soit $E_2 = \left\{ M \in P/4 \overrightarrow{MB} \cdot \overrightarrow{MC} + 2MO^2 = 1 \right\}$. On désigne par G le barycentre des points pondérés (A,1) et (B,2).

- a Montrer que pour tout point M du plan on a : $4\overrightarrow{MB} \cdot \overrightarrow{MC} + 2MO^2 = 6\overrightarrow{MC} \cdot \overrightarrow{MG} + 1$.
- **b** En déduire l'ensemble E₂.
- 4 Soit $E_3 = \left\{ M \in P/MA^2 MO^2 = \frac{\sqrt{3}}{2} \right\}$. On désigne par F le milieu du segment [AO].
 - Vérifier que le point E appartient à l'ensemble E₃.
 - b Déterminer alors l'ensemble E₃.

Exercice 3 (8 points)

Soit la fonction f définie par $f(x) = \frac{\sqrt{x+3}-2}{x-1}$.

- a Vérifier que l'ensemble de définition de f est $D_f = [-3, +\infty[\setminus \{1\}]]$.
- b Étudier la continuité de f sur son ensemble de définition.
- Montrer que f est prolongeable par continuité en 1 et déterminer son prolongement F.
- d Montrer que f est strictement décroissante sur]1, $+\infty$ [.
- 2 Montrer que l'équation f(x) = x 2 admet dans]2,3[une unique solution α .
 - b Vérifier que $\sqrt{\alpha+3} = \frac{-2\alpha+5}{\alpha-2}$
 - Montrer que $\lim_{x\to\alpha} \frac{(\alpha-2)\sqrt{x+3}+2\alpha-5}{(\alpha-2)(x-\alpha)} = \frac{2-\alpha}{2(2\alpha-5)}$.
- \bigcirc Dans la suite , on désigne par E(x) la partie entière de x. On considère la fonction g définie par :

$$g(x) = \frac{-2x^2 - E(x)}{x+1} \quad \text{si } x \in [-3, -1[$$

$$g(x) = \frac{2x^3 - |x| - 1}{x-1} + ax + b \quad \text{si } x \in [-1, 1[$$

$$g(x) = F(x) \quad \text{si } x \in [1, +\infty[$$
Où a et b sont deux réels.

- a Montrer que g est continue en -1 si et seulement si a b = -2
- **b** Déterminer la limite de g à gauche en 1 en fonction de a et b.
- $lue{c}$ Déterminer alors a et b pour que g soit continue en -1 et en 1.
- d Pour les valeurs de a et b trouvées, déterminer les intervalles sur les quels g est continue.

BON TRAVAIL