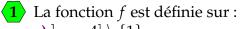
C. R. E. : Sfax-1	Devoir de contrôle N°1		Niveau : 3 ^{ème} Math
Date: 08 / 11 / 2025	Mathématiques	Coefficient : 4	Durée : 2 h

Noter bien : • Il sera tenu compte de la rigueur et de la clarté des réponses.

- Aucun document n'est autorisé, sauf, une calculatrice non programmable.
- L'indication des références des exercices et des questions est obligatoire.

Exercice N°1: (3 points).

- ▶ Dans la figure ci-dessous, on a tracé dans un repère orthonormé $(O, \overrightarrow{i}, \overrightarrow{j})$, la courbe représentative \mathscr{C}_f d'une fonction f définie sur un domaine D_f
- ▶ Par une lecture graphique, répondre aux questions de cet exercice.
- Q.C.M.: Déterminer, à chaque fois et sans justification, la seule réponse correcte :



a)
$$]-\infty,4]\setminus\{1\}$$

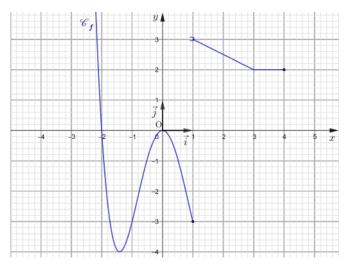
b)
$$]-\infty,4]$$

c)
$$]-\infty,4[$$

- \bigcirc La fonction f est continue :
 - **a)** en 1
 - b) à droite en 1
 - c) à gauche en 1

V./F. : Répondre, à chaque fois et avec justification, par vrai ou faux :

- 1 La fonction |f| est continue en 1
- L'équation : f(E(x)) = 3 admet dans D_f une unique solution.



Exercice N°2: (6 points).

Soit *f* la fonction : $x \mapsto \frac{\sqrt{x+3}-2}{x-1}$

- \bigcirc a Déterminer D_f
 - **b** Justifier que f est continue sur chacun des intervalles [-3,1[et $]1,+\infty[$
 - © Prouver que pour tout réel x appartenant à D_f on a : $f(x) = \frac{1}{2 + \sqrt{x+3}}$
- (2) a Montrer que f est prolongeable par continuité en 1 et définir son prolongement noté F
 - **b** Etudier la monotonie de F sur $[-3, +\infty]$
 - **c** Montrer que pour tout réel $x \ge -3$ on $a : 0 \le F(x) \le \frac{1}{2}$
 - **d** Justifier que $\frac{1}{2}$ est un maximum de F et que 0 n'est pas un minimum de F
- (3) (a) Montrer que l'équation : F(x) = x admet au moins une solution α dans $\left[\frac{1}{5}, \frac{3}{10}\right]$
 - **(b)** Etablir que α vérifie l'équation : $\alpha^3 \alpha^2 + 4\alpha 1 = 0$

Exercice N°3: (6,5 points).

On donne dans le plan P un triangle équilatéral ABC de côté a. Et on désigne D le point tel que $\overrightarrow{AD} = \frac{3}{2}\overrightarrow{CB}$ et par I et J les milieux respectifs de segments [BC] et [AD]. (Figure ci-jointe).

- 1 (a) Calculer en fonction de a les produits scalaires $\overrightarrow{AB}.\overrightarrow{AI}$ et $\overrightarrow{AB}.\overrightarrow{AD}$
 - **b** En déduire que $(AB)\perp(ID)$.
 - © Montrer que $BJ = a \frac{\sqrt{13}}{4}$
- 2 a Montrer que $\overrightarrow{BA}.\overrightarrow{BD} = \frac{a^2}{4}$
 - **b** En déduire que $BD = \frac{a\sqrt{7}}{2}$ puis calculer $\cos\left(\widehat{ABD}\right)$.
- 3 Soit G le point d'intersection de droites (AB) et (ID).
 - (a) Justifier que $\overrightarrow{AB}.\overrightarrow{AG} = AI^2$
 - **b** En déduire que A est le barycentre des points pondérés (G,4) et (B,-3).
- 4 Soit Γ l'ensemble de points M du plan P tels que : $4\overrightarrow{MG}.\overrightarrow{MD}=3\overrightarrow{MB}.\overrightarrow{MD}$
 - (a) Montrer que Γ est le cercle de diamètre [AD].
 - **b** La droite(BD) recoupe Γ en H. Calculer $\overrightarrow{BH}.\overrightarrow{BD}$ puis déduire BH

Exercice N°4: (4,5 points).

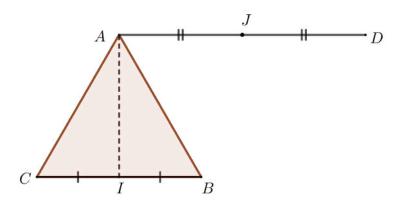
Dans le plan P orienté dans le sens direct, on considère un triangle ABC isocèle en A tel que $(\overrightarrow{CA}, \overrightarrow{CB}) \equiv \frac{\pi}{6} [2\pi]$ et $\mathscr C$ son cercle circonscrit. (Voir l'annexe ci-jointe).

- 1 Donner la mesure principale de l'angle orienté $(\overrightarrow{AB}, \overrightarrow{AC})$.
- Soit M un point de l'arc orienté $\stackrel{\frown}{BC}$ distinct de B et C. On désigne par I, J et H les projetés orthogonaux de M respectivement sur (AB), (BC) et (AC).
 - (a) Montrer que les points J , H , C et M appartiennent à un même cercle Γ que l'on précisera.
 - **b** Démontrer que $(\overrightarrow{HJ}, \overrightarrow{HM}) \equiv (\overrightarrow{AB}, \overrightarrow{AM}) [2\pi]$
 - © Démontrer que $(\overrightarrow{HM}, \overrightarrow{HI}) \equiv (\overrightarrow{AM}, \overrightarrow{AB}) [2\pi]$
 - **d** En déduire que les points *I* , *J* et *H* sont alignés.
- Soient $\varphi = \left\{ N \in P / \left(\overrightarrow{NB}, \overrightarrow{NC} \right) \equiv \frac{\pi}{3} \left[2\pi \right] \right\}$ et D le symétrique de C par rapport à A
 - **a** Montrer que $D \in \varphi$
 - **b** Déterminer, alors, l'ensemble φ
 - Soit L le symétrique de M par rapport à (BC). Montrer que $L \in \varphi$

Devoir de contrôle N°1 en mathématiques pour 3^{ème} math 2025/2026

Annexe à rendre avec la copie

Exercice N°3:



Exercice N°4:

