Coefficient : 4

Classes: 3eme Maths

le 05/11/2025

2 Heures

« Qui va lentement, va sûrement et qui va sûrement, va plus loin »

EXERCICE N° 1: (6 points)

Soit la fonction f est définie sur $[1,+\infty[$ par $f(x) = \frac{\sqrt{x-1}-2}{\sqrt{x-1}+2}$.

- 1°/ Justifier que f est continue sur $[1,+\infty[$.
- 2°/ a) Montrer que f est majorée par 1.
 - b) Vérifier que $f(x) = 1 \frac{4}{\sqrt{x-1} + 2}$ pour tout $x \ge 1$.
 - c) Montrer que f est strictement croissante sur [1,+∞[.
 - d) En déduire que f est bornée sur $[1,+\infty[$.
- 3°/a) Montrer que l'équation f(x) = -x+1 admet une solution α dans l'intervalle]1,2[.
 - b) Vérifier que $\sqrt{\alpha 1} = -2 + \frac{4}{\alpha}$.
- 4°/ Dans un repère orthonormé, on a construit <u>sur l'annexe fournie page 3</u> la courbe Γ d'équation $y = \sqrt{x-1}$ ainsi que la restriction à l'intervalle $]0,+\infty[$ de l'hyperbole ζ d'équation $y = -2 + \frac{4}{x}$. Construire le point A appartient à (ζ_f) d'abscisse α .
- 5°/ Soit la fonction définie sur $[1,+\infty[\setminus\{3\} \text{ par} : g(x) = \begin{cases} \frac{f(x)}{x-5} & si \cdot x \in [\alpha,+\infty[\setminus\{5\}]] \\ \frac{1-x^2}{x^2-4x-5} & si \cdot x \in [1,\alpha[]] \end{cases}$
 - a) Montrer que g est prolongeable par continuité en 5
 - b) Montrer que g est continue en α .

EXERCICE N°2: (5 points)

NB : les question 1°/, 2°/ et 3°/ de cet exercice sont indépendantes.

- 1°/ Soit f une fonction définie sur IR tel que : pour tout $x \in \square$: $f(-x) + 3f(x) = 4x^4 + 2x^2 + 1$.
 - a) Montrer que f est une fonction paire.
 - b) En déduire l'expression de la fonction f.
- 2°/ Dans la figure <u>Annexe 2 page 3</u> on a représenté graphiquement une fonction f définis sur [-2,5]

Par lecture graphique:

- a) Déterminer les intervalles sur les quels la fonction f est continue.
- b) Déterminer f([-2,0]) et f([-2,1])
- c) Résoudre l'inéquation : $2 \le f(x) < 3$ et en déduire le domaine de définition de la fonction

g définie par :
$$g(x) = \frac{1}{E(f(x))-2}$$
.

- d) Résoudre dans IR l'équation : E(f(x)) = 1.
- e) Résoudre dans IR l'équation : f(E(x)) = 1.

N.B: On donnera une brève justification pour les questions c), d) et e).

3°/ Montrer que
$$\lim_{x\to 2} \frac{\sqrt{4x+1} + \sqrt{2+x} - 5}{x-2} = \frac{11}{12}$$

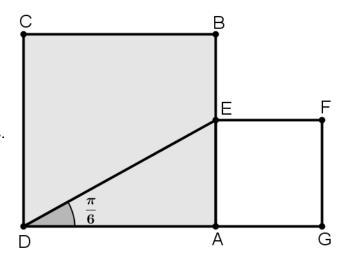
EXERCICE N°3: (6 points)

Dans la figure ci-contre on considère les deux carrés ABCD et AGFE tels que : $AB = \sqrt{3}$.

E est le point du segment [AB] tel que $ADE = \frac{\pi}{6}$.

On désigne par I le milieu du segment [AC]

- 1°/a) Montrer que $\overrightarrow{DA}.\overrightarrow{DE} = 3$.
 - b) En déduire que DE = 2 puis AE = 1.
- 2°/ a) Calculer $\overrightarrow{AB} \cdot \overrightarrow{AE}$ et $\overrightarrow{AD} \cdot \overrightarrow{AG}$.
 - b) En déduire que (DE) et (BG) sont perpendiculaires.
- 3°/ a) Montrer que $\overrightarrow{DB}.\overrightarrow{DE} = 3 + \sqrt{3}$.
 - b) Vérifier l'égalité $\frac{3+\sqrt{3}}{2\sqrt{6}} = \frac{\sqrt{6}+\sqrt{2}}{4}$.
 - c) En déduire que $\cos(\frac{\pi}{12}) = \frac{\sqrt{6} + \sqrt{2}}{4}$.



- 4°/ Déterminer l'ensembles D = {M \in P tel que $MA.AC = \overrightarrow{AM}.\overrightarrow{CB}$ }.
- 5°/ Montrer que l'ensemble des points M du plan tels que $(MA.MB)MC = (MA^2)MC$ est le cercle circonscrit au carré ABCD.
- 6°/ On considère le repère $(A, \overrightarrow{AG}, \overrightarrow{AE})$ et soit J le milieu du segment [BG].
 - a) Déterminer les coordonnées des points B, G, D, E et J.
 - b) Montrer que les droites (DE) et (BG) sont perpendiculaires.
 - c) Calculer $\overline{AG.AJ}$. En déduire une mesure de l'angle GAJ

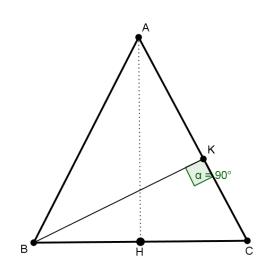
EXERCICE N°4: (3 points)

Dans la figure ABC est un triangle isocèle de sommet principale A tel que AB = AC = 4 et H est le pied de la hauteur issue de A. On se propose de déterminer la longueur x de coté [BC] pour la quelle l'aire du triangle ABC est maximale.

- 1°/ Justifier que $x \in]0,8[$.
- 2°/ On désigne par A(x) l'aire du triangle ABC.

Montrer que
$$A(x) = \frac{x}{4}\sqrt{64-x^2}$$
.

- 3°/ Soit K le pied de la hauteur issue de B dans le triangle ABC.
 - a) Vérifier que A(x) = 2BK.
 - b) En déduire que $A(x) \le 8$.
 - c) Déterminer alors la longueur x de coté [BC] pour la quelle l'aire du triangle ABC est maximale.



Pour une bonne réussite

