* Lycée 18 Janvier Djebniana*

Devoir de contrôle N° 1 3 ème Maths

Date: 25/10/2023 Durée: 2H

PROF: BENMBAREK MAHMOUD

Exercice N° 1 * 3 points *

Répondre par vrai ou faux en justifiant votre réponse.

- 1 La fonction $f(x) = \frac{x^2}{x^2 + 2}$ est bornée.
- f une fonction définie sur un intervalle ouvert I, si |f| est continue sur I alors f est continue sur I.
- f une fonction continue sur [a;b] telle que f(a) < a.b et $f(b) > b^2$ alors il existe un réel $c \in [a;b]$ vérifiant f(c) = b.c.
- Le plan est muni d'un repère orthonormé $(O, \overrightarrow{\iota}, \overrightarrow{\jmath})$. \overrightarrow{u} et \overrightarrow{v} deux vecteurs tels que : $\|\overrightarrow{u}\| = \|\overrightarrow{v}\| = 2$ et $\|\overrightarrow{u} \overrightarrow{v}\|^2 = 4\left(2 + \sqrt{3}\right)$. Alors l'angle formé par les deux vecteurs \overrightarrow{u} et \overrightarrow{v} est $\frac{5\pi}{6}$.

Exercice N° 2 * 5 points *

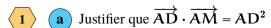
A- Soit f la fonction définie par $f(x) = \sqrt{3x^2 - x^3}$.

- Déterminer l'ensemble de définition de f.
- 2 a Justifier que pour tout $x \in \mathbb{R}$, on a : $3x^2 x^3 = 4 (x 2)^2 (x + 1)$.
 - **b** En déduire que f admet un maximum sur [0;3] que l'on précisera.

B-

Dans la figure ci-contre:

- □ [AB] est un segment de longueur 4.
- \Box H est un point de [AB] tel qeu AH = 1.
- \square M est un point de du segment [HB] tel que BM = x.
- \Box Γ est le demi cercle de diamètre [AM].
- \square La perpendiculaire à (AB) en H coupe Γ en D.

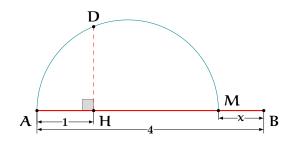


- **b** En déduire que $AD = \sqrt{4 x}$.
- c Calculer alors DH.
- Déterminer alors la position du point M pour que l'aire du triangle BMD est maximale.

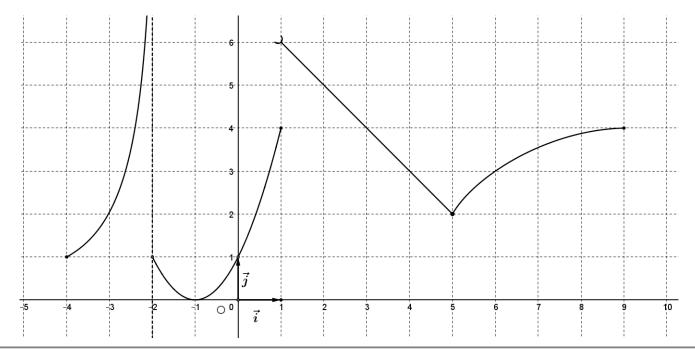
Exercice N° 3 * 5 points *

Dans le graphique ci-dessous

- ullet est la courbe représentative d'une fonction f définie sur l'intervalle [-4,9]
- \Box La droite d'équation x = -2 est une asymptote verticale à \mathscr{C}_f .
- 1 Déterminer :
 - a Les intervalles sur lesquels f est continue.



- **b** L'image, par f, de chacun des intervalles : [1, 6[, [-4, -2]]] et [-2; 2].
- 2 a Résoudre graphiquement les équations : E(f(x)) = 0 et f(E(x)) = 0 où E(x) désigne la partie entière de x.
 - **b** Résoudre, dans l'intervalle [-2,9], l'inéquation $\sqrt{f(x)+1} \le \sqrt{5}$.
- Montrer que, l'équation $f(x) = -x^3$, admet au moins une solution dans l'intervalle [-1, 1].
- Pour tout $x \in [-2; 1]$, on donne $f(x) = x^2 + 2x + 1$ et on désigne par A(-2, -1) et M le point de \mathscr{C}_f d'abscisse x.
 - (a) Vérifier que $\overrightarrow{OA}.\overrightarrow{OM} = -x^2 4x 1$.
 - **b** Déterminer les coordonnées de **M** dans chacun des cas suivants :
 - Le triangle **OAM** soit rectangle en **O**.
 - $\overrightarrow{OA}.\overrightarrow{OM}$ soit maximal.



Exercice N° 4 * 7 points *

On donne un parallélogramme ABCD de centre I tels que : AB = 2, $AD = 2\sqrt{2}$ et $\widehat{BAD} = \frac{3\pi}{4}$.

- - **b** En déduire que les vecteurs \overrightarrow{AI} et \overrightarrow{AB} sont orthogonaux.
 - **c** Faire une figure.
- Soit M un point de la droite (AB). On pose $\overrightarrow{AM} = x\overrightarrow{AB}$, avec $x \in \mathbb{R}$.
 - a Montrer que $\overrightarrow{IM} \cdot \overrightarrow{AD} = -2 4x$.
 - **b** Déterminer alors le point F de (AB) tel que (IF) est perpendiculaire à (AD).
 - f c Vérifier que f F est le barycentre des points pondérés (A,-3) et (B,1)
- Pour tout point M du plan, on pose $f(M) = MB^2 3MA^2$.

Soit \mathscr{E} l'ensemble des points M du plan tels que f(M) = k où k est un réel donné.

- a Montrer que $f(M) = -2MF^2 + 6$.
- **b** Discuter suivant le paramètre réel k la nature de l'ensemble &.

- $\langle 4 \rangle$
- Soit Δ l'ensemble des points M du plan tels que $\overrightarrow{DM} \cdot \overrightarrow{FB} = 6$.
- a Vérifier que $I \in \Delta$.
- **b** Déterminer alors l'ensemble Δ .
- f c Dans le cas où f c est un cercle, déterminer f k pour que f c soit tangent à $f \Delta$.

« ... Croyez en vos rêves et ils se réaliseront peut-être. Croyez en vous et ils se réaliseront sûrement... ».

Martin Luther King

Prof : BenMbarek Mahmoud - 3/3 Devoir De Contrôle N°1