Professeur: Fourati

Devoir de contrôle n°5

Date: 26/04/2025

Classe: 2Sc ; Durée : 1 h

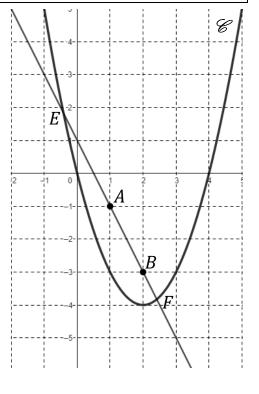
Exercice 1 : (6pts)

La courbe & ci-contre représente une fonction f dans un repère orthonormé

 1° /a- Déterminer la nature et les éléments caractéristique de la courbe \mathscr{C} .

b-Justifier que pour tout réel x; $f(x) = a(x-2)^2 - 4$

 $2^{\circ}/a$ - Déterminer ; graphiquement ; f(0) puis calculer a.


b- En déduire que $f(x) = x^2 - 4x$.

 $3^{\circ}/La$ droite (AB) coupe la courbe \mathscr{C} en deux points E et F. On donne A(1;-1) et B(2;-3)

a- Vérifier que (AB): y = -2x + 1.

b- Calculer les abscisses des points E et F.

c- Résoudre graphiquement l'inéquation : $x^2 < 2x + 1$

Exercice 2 : (6pts)

Soit la fonction f définie par $f(x) = ax^2 - 2$ tel que $a \in \mathbb{R}$.

 $1^{\circ}/a$ - Déterminer le réel \mathfrak{a} pour que la courbe \mathscr{C}_f de f passe par le point A(2;0).

b- On donne $a = \frac{1}{2}$, tracer dans un repère orthonormé $(0; \vec{\iota}; \vec{\jmath})$ la courbe \mathcal{C}_f de f.

2°/Soit la fonction g définie par $g(x) = \frac{1}{2}|x+2|(x-2)$.

a- Montrer que pour tout $x \in [-2; +\infty[$; on a : g(x) = f(x)

b- Montrer que pour tout $x \in]-\infty; -2]; on a : g(x) = -f(x)$

c- Déduire la courbe \mathcal{C}_g de g à partir de la courbe \mathcal{C}_f .Expliquer.

 $3^{\circ}/D$ éterminer, graphiquement, les valeurs possibles de m pour que l'équation g(x) = m admet deux solutions.

Exercice 3: (8pts)

On donne dans un repère orthonormé $(0, \vec{i}; \vec{j})$ les points A(1; 1), B(3; 0)

1°/ a- Déterminer une équation cartésienne de la droite (AB)

b- Déterminer une équation cartésienne de Δ la droite perpendiculaire à (AB) passant par O

 $2^{\circ}/Soit\ l'ensemble\ \mathscr{C}: x^2 + y^2 - 4x + 4y + 3 = 0$

a- Montrer que $\mathscr C$ est le cercle de centre I(2;-2) de rayon $R=\sqrt{5}$.

b- Calculer la distance du point I à la droite (AB). on donne (AB): x + 2y - 3 = 0.

c- En déduire la position relative du cercle & et la droite (AB)

 $3^{\circ}/On\ donne\ \Delta$: 2x - y = 0. Montrer que : $\mathscr{C} \cap \Delta = \emptyset$