Correction devoir de contrôle n°1 (2024/25) 3^{ème} Sc1

Exercice 1:

$$1^{\circ}/a - On \ a : \left(\overrightarrow{BD}, \overrightarrow{BO}\right) \equiv \frac{91\pi}{10} [2\pi]$$

$$et \ \frac{91\pi}{10} - \frac{11\pi}{10} = \frac{80\pi}{10} = 4 \times 2\pi \ donc \ \frac{11\pi}{10} \ est \ une$$

$$mesure \ de(\overrightarrow{BD}, \overrightarrow{BO})$$

$$b - On \ a : \left(\overrightarrow{BD}, \overrightarrow{BO}\right) \equiv \frac{11\pi}{10} [2\pi]$$

$$\equiv \frac{11\pi}{10} - 2\pi [2\pi]$$

$$\equiv \frac{-9\pi}{10} [2\pi]$$

Puisque $\frac{-9\pi}{10} \in]-\pi;\pi]$ alors $\frac{-9\pi}{10}$ est la mesure principale $(\overrightarrow{BD}, \overrightarrow{BO})$

2°/a):
$$(\overrightarrow{AB}, \overrightarrow{BD}) \equiv (\overrightarrow{BA}, \overrightarrow{BD}) + \pi[2\pi]$$

$$\equiv (\overrightarrow{BO}, \overrightarrow{BD}) + \pi[2\pi] \operatorname{car} \overrightarrow{BA} = 2\overrightarrow{BO}$$

$$\equiv \frac{9\pi}{10} + \pi - 2\pi[2\pi]$$

$$\equiv \frac{-\pi}{10}[2\pi]$$
b) $(\overrightarrow{AC}, \overrightarrow{BD}) = (\overrightarrow{AC}, \overrightarrow{AB}) + (\overrightarrow{AB}, \overrightarrow{BD})[2\pi]$

b)
$$(\overrightarrow{AC}, \overrightarrow{BD}) \equiv (\overrightarrow{AC}, \overrightarrow{AB}) + (\overrightarrow{AB}, \overrightarrow{BD}) [2\pi]$$

$$\equiv \frac{-2\pi}{5} + \frac{-\pi}{10} [2\pi]$$

$$\equiv \frac{-4\pi - \pi}{10} [2\pi]$$

$$\equiv \frac{-\pi}{2} [2\pi]$$

c) On a: $(\overrightarrow{AC}, \overrightarrow{BD}) \equiv \frac{-\pi}{2} [2\pi]$ donc $(AC) \perp (BD)$ or [AB] est un diamètre de \mathscr{C} et $C \in \mathscr{C}$ donc $(AC) \perp (BC)$ par suite (BC)//(BD) et B, C et D sont alignées c à $d: C \in (BD)$.

Exercice 2:

 $I.1^{\circ}/a)4$ est un maximum absolu de f en -1

2 est un maximum relatif de f en 4

-4 est un minimum absolu de f en 1

-2 est un minimum relatif de f en -4

b) f est croissante sur [0; 1] et sur [4; 5]f est décroissante sur [1; 4]

$$2^{\circ}/a$$
) $\lim_{x\to 0^{-}} f(x) = 3$.

b)on a $f(0) = -3 \neq \lim_{x \to 0^{-}} f(x)$ donc la fonction fc- f est continue sur[-5; 0[et sur[0; 5] Formalis f([-5:0]) = [-2:0]n'est pas continue en 0

 $3^{\circ}/f([-5;0[)=[-2;4]$ $f([-5;0]) = f([-5;0]) \cup f(\{0\}) = [-2;4] \cup \{-3\}$ $f([-2;2]) = f([-2;0[) \cup f([0;2])$ $= [3; 4] \cup [-4; -3]$

 4° /a) Sur [−5; 0[\cup]0; 5] la courbe est symétrique par rapport l'origine du repère 0 donc la restriction de f $sur[-5;0] \cup [0;5]$ est impaire.

b)Puis que la restriction de f sur $[-5; 0] \cup [0; 5]$ est impaire, alors $\forall x \in [-5; 0] \cup [0; 5]$ on a:

$$f(-x) = -f(x)$$

$$II.1^{\circ}/g(0) = 0 \times f(0) = 0$$

$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{+}} xf(x) = 0$$

$$et \lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} xf(x) = 0$$
on $a \lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{+}} g(x) = g(0)$ donc g est continue en g .

 $2^{\circ}/On\ a: x \mapsto f(x)$ est continue $sur[-5; 0[\cup]0; 5]$ et $x \mapsto x$ est continue sur \mathbb{R} . Donc g (comme étant produit) est continue sur $[-5; 0[\cup]0; 5]$ est puis que gest continue en 0 alors g est continue sur [-5; 5]. $3^{\circ}/\forall x \in [-5; 5] \setminus \{0\} \text{ on } (-x) \in [-5; 5] \setminus \{0\} \text{ et }$ $g(-x) = -x \cdot f(-x) = -x \cdot (-f(x)) = xf(x) = g(x)$ $Or g(0) = 0 \ donc \ \forall x \in [-5; 5]; (-x) \in [-5; 5] \ et$ g(-x) = g(x) c-à-d la fonction g est paire

Exercice 3:

1°/a)On a : $x \mapsto x^2 - 2x + 2$ est une fonction polynôme continue sur \mathbb{R} et $\Delta = (-2)^2 - 4 \times 2 = -4 < 0$ donc $\forall x \in \mathbb{R}$; $x^2 - 2x + 2 > 0$ par suite la fonction $x \mapsto \sqrt{x^2 - 2x + 2}$ est continue sur \mathbb{R} et la fonction $x \mapsto \sqrt{x^2 - 2x + 2} - 1$ est continue sur \mathbb{R} Et on a $x \mapsto \frac{1}{(x-1)^2}$ une fonction rationnelle continue sur son domaine $\mathbb{R} \setminus \{1\}$

D'où f comme étant produit est continue sur $\mathbb{R} \setminus \{1\}$

b)
$$\forall x \in D_f$$
; $f(x) = \frac{(\sqrt{x^2 - 2x + 2} - 1)(\sqrt{x^2 - 2x + 2} + 1)}{(x - 1)^2(\sqrt{x^2 - 2x + 2} + 1)}$

$$= \frac{x^2 - 2x + 2 - 1}{(x^2 - 2x + 1)(\sqrt{x^2 - 2x + 2} + 1)}$$

$$= \frac{1}{(\sqrt{x^2 - 2x + 2} + 1)}$$

$$c) \lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{1}{(\sqrt{x^2 - 2x + 2} + 1)} = \frac{1}{(\sqrt{x^2 - 2x + 2} + 1)}$$

c)
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1}{(\sqrt{x^2 - 2x + 2} + 1)} = \frac{1}{1 + 1} = \frac{1}{2}$$

donc f est prolongeable par continuité en 1. Soit Fle prolongé de f en 1,F est définie sur par

$$F(x) = \frac{1}{\left(\sqrt{x^2 - 2x + 2} + 1\right)}$$

2°/a) On a:
$$\lim_{x \to 1^+} g(x) = \lim_{x \to 1^+} f(x) = \frac{1}{2}$$
 et

$$\lim_{x \to 1^{-}} g(x) = \lim_{x \to 1^{-}} x - \frac{1}{|x| + 1} = 1 - \frac{1}{1 + 1} = \frac{1}{2}$$

Et
$$g(1) = 1 - \frac{1}{2} = \frac{1}{2}$$

Puis que : $\lim_{x \to 1^{+}} g(x) = \lim_{x \to 1^{-}} g(x) = g(1)$ alors g est continue en 1.

b) On a f est continue sur $\mathbb{R} \setminus \{1\}$ en particulier continue sur $]1; +\infty[$ donc g est continue sur $]1; +\infty[$ $x \mapsto x$ est continue sur \mathbb{R}

Donc la fonction $x \mapsto |x|$ est continue sur \mathbb{R} Par suite $x \mapsto |x| + 1$ est continue sur \mathbb{R}

 $\forall x \in \mathbb{R}$; $|x| + 1 \neq 0$ car $|x| + 1 \geq 1$ alors $x \mapsto \frac{-1}{|x| + 1}$ est continue sur \mathbb{R} est puis que $x \mapsto x$ est continue $sur \mathbb{R} alors x \mapsto x - \frac{1}{|x|+1} est continue sur \mathbb{R} en$

particulier continue sur $]-\infty;1]$ c.-à-d. :g est continue $sur]-\infty; 1]$

Conclusion:

On a: g est continue sur $]-\infty;1]$, g est continue sur]1; $+\infty$ [et g est continue en 1.

Donc g est continue sur \mathbb{R}

3°/a)On a: $g(0) = 0 - \frac{1}{1+1} = -\frac{1}{2} < 0$ et $g(1) = \frac{1}{2} > 0$ puis que g est continue sur \mathbb{R} alors l'équation g(x) = 0admet au moins une solution $\alpha \in [0; 1]$

b) On
$$a: \alpha \in [0; 1]$$
 donc $g(\alpha) = \alpha - \frac{1}{|\alpha|+1}$ or $\alpha \ge 0$

donc
$$g(\alpha) = \alpha - \frac{1}{\alpha+1}$$

 $g(\alpha) = 0 \Leftrightarrow \alpha - \frac{1}{\alpha+1} = 0$
 $\Leftrightarrow \alpha = \frac{1}{\alpha+1}$
 $\Leftrightarrow \alpha^2 + \alpha = 1$
 $\Leftrightarrow \alpha^2 + \alpha - 1 = 0$

Donc α est une solution de l'équation $x^2 + x - 1 = 0$

c)
$$\Delta = 1^2 - 4 \times 1 \times (-1) = 5 > 0$$

donc $x' = \frac{-1 - \sqrt{5}}{2} \notin [0; 1]$ et $x'' = \frac{-1 + \sqrt{5}}{2} \in [0; 1]$
c.-à-d. $\alpha = \frac{\sqrt{5} - 1}{2}$

Exercice 4:

1°/a) On a ABC est un triangle rectangle en B donc B le Fourati projeté orthogonale de C sur (AB) d'où :

$$\overrightarrow{AB}.\overrightarrow{AC} = \overrightarrow{AB}.\overrightarrow{AB} = AB^2 = 4^2 = 16$$

b) On a \overrightarrow{AB} . $\overrightarrow{AC} = AB$. AC. $\cos \widehat{BAC}$ tel que AB = 4 et $AC^2 = AB^2 + BC^2 = 16 + 4 = 20 \Leftrightarrow AC = 2\sqrt{5}$ d'autre part \overrightarrow{AB} . $\overrightarrow{AC} = 16$ donc $4 \times 2\sqrt{5} \cos \widehat{BAC} = 16$

$$\Leftrightarrow \cos \widehat{BAC} = \frac{16}{8\sqrt{5}} = \frac{2\sqrt{5}}{5}$$

 $(2^{\circ}/a)\overrightarrow{CI}.\overrightarrow{IB} = -\overrightarrow{IC}.\overrightarrow{IB} = -IB^2 = -2^2 = -4$ car B le projeté orthogonale de C sur (IB)

$$\overrightarrow{CI}.\overrightarrow{BE} = \overrightarrow{CI}.\overrightarrow{CB}$$
 car $\overrightarrow{CB} = \overrightarrow{BE}$ puis que $B = C * E$
= CB^2 car B le projeté de I sur (BC)
= 4

b) On
$$a : \overrightarrow{CI}.\overrightarrow{IE} = \overrightarrow{CI}.(\overrightarrow{IB} + \overrightarrow{BE})$$

$$= \overrightarrow{CI}.\overrightarrow{IB} + \overrightarrow{CI}.\overrightarrow{BE}$$

$$= -4 + 4$$

$$= 0$$
Donc $(CI) \perp (IE)$

 $3^{\circ}/\mathscr{C} = \{ \forall M \in \mathcal{P}, tel \ que \ MA^2 - 3MB^2 = 8 \}$: avec P est le plan

$$a)CA^{2} - 3CB^{2} = (2\sqrt{5})^{2} - 3 \times 2^{2}$$
$$= 20 - 3 \times 4$$
$$= 8 \text{ donc } C \in \mathscr{C}$$

b) G est le barycentre de (A; 1) et (B; -3)

$$\Leftrightarrow \overrightarrow{GA} - 3\overrightarrow{GB} = \overrightarrow{0}$$

 $\forall M \in \mathcal{P}$, on a:

$$MA^{2} - 3MB^{2} = (\overrightarrow{MG} + \overrightarrow{GA})^{2} - 3(\overrightarrow{MG} + \overrightarrow{GB})^{2}$$

$$= MG^{2} + 2\overrightarrow{MG}.\overrightarrow{GA} + GA^{2} - 3MG^{2} - 6\overrightarrow{MG}.\overrightarrow{GB} - 3GB^{2}$$

$$= -2MG^{2} + GA^{2} - 3GB^{2} + 2\overrightarrow{MG}.(\overrightarrow{GA} - 3\overrightarrow{GB})$$

$$= -2MG^{2} + GA^{2} - 3GB^{2}$$

$$= \overrightarrow{0}$$

D'autre part G est le barycentre de (A; 1) et (B; -3) $\overrightarrow{W} \Leftrightarrow \overrightarrow{AG} = \frac{-3}{2} \overrightarrow{AB} \text{ donc } AG = \frac{3}{2} AB = \frac{3}{2} \times 4 = 6$ Et $\overrightarrow{BG} = \frac{1}{-2} \overrightarrow{BA}$ donc $BG = \frac{1}{2} AB = \frac{1}{2} \times 4 = 2$ $D'où MA^2 - 3MB^2 = -2MG^2 + 36 - 3 \times 4$ $= 24 - 2MG^2$

c)
$$\mathscr{C} = \{ \forall M \in \mathcal{P}, tel \ que \ MA^2 - 3MB^2 = 8 \}$$

 $= \{ \forall M \in \mathcal{P}, tel \ que \ 24 - 2MG^2 = 8 \}$
 $= \{ \forall M \in \mathcal{P}, tel \ que \ 2MG^2 = 24 - 8 = 16 \}$
 $= \{ \forall M \in \mathcal{P}, tel \ que \ MG^2 = \frac{16}{2} = 8 \}$
 $= \{ \forall M \in \mathcal{P}, tel \ que \ MG^2 = \sqrt{8} = 2\sqrt{2} \}$

 \mathscr{C} est le cercle de centre G et de rayon $2\sqrt{2}$ Or $C \in \mathscr{C}$ donc le cercle \mathscr{C} de centre G passant par C.

Fourati Ali