
Théorème de Thales et sa réciproque

Exercice 1

Dans la figure ci contre on donne AB = 10 BD = 12

- 1) Caluler CE
- 2) Caluler AF et FG

<u>Exercice 2</u>

On considère un triangle , T un point de la droite (BC)

et R un point un point du segment [AB]

La droite (TR) coupe [AC] en S

La parallèle à (AB) passant par C coupe (TR) en I

- 1) Calculer $\frac{SC}{SA}$
- 2) Montrer que $\frac{TB}{TC} = \frac{RB}{IC}$
- 3) a) Montrer que $\frac{TB}{TC} \times \frac{SC}{SA} \times \frac{RA}{RB} = 1$

c) Calculer alors $\frac{IB}{IC}$

Exercice 3

Soient un cercle ζ de centre O de diamètre [AB] tel que AB=10

C un point de [OB] tel que OC = 3.La perpendiculaire Δ à (AB) en C coupe ζ en D et D.

- 1) a) Montrer que $(BD) \perp (AD)$.
 - **b)** Soit E le milieu de [BD].Montrer que (OE)//(AD).
 - c) En déduire que AD = 20E.
- 2) La droite Δ coupe (OE) en H
 - a) Montrer que $\frac{OH}{AD} = \frac{CO}{CA}$
 - **b)** En déduire que $AD = \frac{8}{3}OH$

Exercice 4

Soit ABC un triangle tel que AB = 5. AC = 6 et BC = 3,48 et E le point de [AB) tel que

AE = 8. La prallèle à (CE) passant par B coupe (AC) en F

- 1) a) Calculer AF puis FC
 - **b)** Sachant que CE = 4.8 calculer BF
- 3) Soit K un point de la demi droite [BH) tel que BK = 8

Les droites (BC) et (AK) sont elles parallèles ? justifier.

Exercice 5

Soit ABC un triangle tel que BC=8. AB=5. On désigne par E et F les points du segment [BC] tel que BE=CF=2

- 1) a) La parallèle à (AB) passant par E coupe (AC) en N. Calculer $\frac{AN}{AC}$
 - b) La parallèle à (AC) passant par F coupe (AB) en M. Calculer $\frac{AM}{AB}$
- 2) Montrer que (MN)//(BC) puis caculer MN et AM
- 3) a) Soit $\{I\} = (MF) \cap (EN)$ calculer NI
- **b)** Soit *K* le symétrique du point *M* par rapport à *N*, la parallèle à (*IN*) passant par *K* coupe (*MF*) en *P*, et (*BC*) en *J*

Montrer que I est le milieu de $\lceil MP \rceil$ puis calculer PK

4) Déterminer la nature de quadrilatère *MKJB* puis calculer *JP*

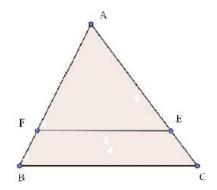
Exercice 6

Soit ABCD un trapèze de base [AB] et [CD] tel que AD = 8 AB = 5 et DC = 10

- 1) Placer le point M de [AD] tel que $\frac{AM}{2} = \frac{AD}{3}$
- 2) La parllèleb à (AB) passant par M coupe (DB) en E et (AC) en F
- 3) Prouver que $\frac{MF}{DC} = \frac{\hat{AM}}{AD}$ en déduire MF
- 4) Prouver que $\frac{ME}{AB} = \frac{DM}{AD}$ en déduire ME
- 5) Calculer EF
- 6) Quelle est la nature du quadrilatère ABFE

Exercice 7

On considère la figure ci-contre :


On donne : $AB = 2\sqrt{5}$; AC = 5; BC = 5 et $AE = \frac{15}{4}$. avec (FE)//(BC)

- 1) Calculer les distances AF et EF
- 2) Construire le point D tel que ABCD soit un parallélogramme.

La droite (FE) coupe (CD) en K.

- a) Trouver la distance CE.
- **b)** Déterminer les distances *CK* et *KE*.
- 3) Soit G un point du segment [CB] tel que $CG = \frac{5}{4}$.

Montrer que (EG)//(AB) (En utilisant la réciproque de Thales).

Exercice 8

Soit ABCD un parllèlogramme de centre O tel que AB = 4,5. La parallèle à la droite (AC) passant par B coupe la droite (CD) en E. La droite (AE) coupe les droites (BC) et (BD) respectivement en E et en E

- 1) a) Comparer $\frac{KB}{KD}$ et $\frac{KF}{KA}$ puis $\frac{KB}{KD}$ et $\frac{KA}{KE}$
 - **b)** En déduire que $KA^2 = KE \times KF$
- 2) a) Montrer que F est le milieu du segment [BC]
 - **b)** Que représente le point *K* pour le triangle *ABC*
- 3) La droite (OF) coupe la droite (BE) en I
 - a) Construire le point H du segment [BE] tel que $BH = \frac{2}{3}BI$
 - **b)** Montrer que (HK)//(OI) puis calculer HK