Relations métriques dans un triangle rectangle

Exercice 1

Soit x un angle aigu tel que $\sin \frac{3}{4}$

Calculer $\cos x$ et $\tan x$

Exercice 2

Soit x un angle aigu

- 1) Montrer que $cos^2x = \frac{1}{1+tan^2x}$
- 2) On donne $\tan x = 2$ Calculer $\cos x$ et $\sin x$

Exercice 3

Soit x un angle aigu tel que $\cos x = \frac{1}{3}$

- 1) Calculer $\sin x$ et $\tan x$
- 2) Montrer les égalités suivantes

a)
$$\frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} = \frac{1}{\cos^2 x \sin^2 x}$$

b)
$$(1 - 2\sin x)(1 + 2\sin x) + 3\sin^2 x = \cos^2 x$$

Exercice 4

Soit un triangle ABC tel que BC = 3 et $\widehat{ABC} = 60^{\circ}$

- 1) Calculer AB et AC
- 2) Soit (AH) la hauteur du triangle ABC issue de A calculer AH BH et CH

<u>Exercice 5</u>

Soit x un angle aigu

- 1) a) Montrer que $\frac{1-tan^2x}{1+tan^2x} = 2cos^2x 1$
 - b) Sachant que $\tan x = \sqrt{3}$, calculer $\cos x$ et $\sin x$
- 2) Montrer que $(\cos x + \sin x)^2 = 1 + 2 \sin x \cos x$

Exercice 6

Soit x un angle aigu $(x \neq 0)$

- 1) Montrer que $\frac{\sin x}{1+\cos x} = \frac{1-\cos x}{\sin x}$
- 2) Montrer que $tg^2x \sin^2 x = tg^2x \sin^2 x$

- 3) Montrer que $\cos^4 x \sin^4 x = 1 2\sin^2 x$
- 4) Montrer que $\cos^4 x + \sin^4 x = 1 2\sin^2 x \cos^2 x$
- 5) Montrer que $sin^6x + cos^6x + 3sin^2x cos^2x = 1$

Exercice 7

Soit un triangle ABC tel que AB = 3 $AC = 2\sqrt{2}$ et $BC = \sqrt{17}$

- 1) Montrer que le triangle ABC est rectangle en A
- 2) Calculer $\cos \widehat{ACB} = \sin \widehat{ACB}$ et $\tan \widehat{ACB}$
- 3) Soit H le projeté de A sur (BC) et H' le projeté de H sur (AC)

Calculer AH; BH et AH'

Exercice 8

Donner la réponse exacte

- 1) Pour tout angle aigu α on a :
- a) $cos^2(\alpha) sin^2(\alpha) = 1$ b) $cos^2(\alpha) + sin^2(\alpha) = \alpha^2$ c) $cos(\alpha) = sin(90^\circ \alpha)$
- 2) ABC est un triangle rectangle en B tel que AB = 3 et BC = 4 alors:
 - a) $\cos(\widehat{A}) = \frac{3}{5}$
- c) tan $(\widehat{A}) = \frac{3}{4}$

Exercice 9

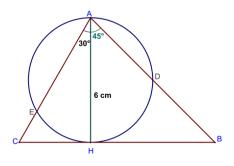
Dans la figure ci-contre ABC est un triangle

de hauteur [AH] tel que = 6, \widehat{BAH} = 45°

et $\widehat{HAC} = 30^{\circ}$

- 1) Calculer , AC et BC.
- 2) Le cercle de diamètre [AH] coupe (AB)

en D et (AC) en E.


Calculer AD et AE

On donne: $cos(45^\circ) = \frac{\sqrt{2}}{2}$ et $sin(45^\circ) = \frac{\sqrt{2}}{2}$

Exercice 10

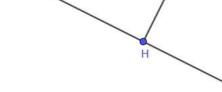
Soit Tun cercle de centre O et de rayon 5 cm. Soient A et B deux points diamétralement opposés de T et C un point de C tel que AC = 8 cm.

- 1) Faire une figure.
- 2) Montrer que ABC est un triangle rectangle en C.

- 3) Montrer que BC = 6 cm.
- 4) a) Montrer que $\cos \widehat{BAC} = \frac{4}{5}$ et en deduire $\sin \widehat{BAC}$
 - b) Donner une valeur approchée de \widehat{BAC} à 10^{-2} près.
- 5) La médiatrice du segment [AB] coupe le segment [AC] au point D et le cercle \mathcal{C} au point E Calculer OD puis AE.

Exercice 11

On donne un triangle ABC rectangle en A [AH] est la hauteur issue de A $H \in [BC]$ et AH = 3cm


- 1) Construire se triangle
- 2) Calculer AC, AB, BH et BC
- 3) Soit I le milieu de [BC], calculer AI et AIB

Exercice 12

On a représenté ci-contre un triangle ABC tel que

$$AB = 3$$
; $AC = 6$; $BC = 3\sqrt{5}$ et $AE = 2$

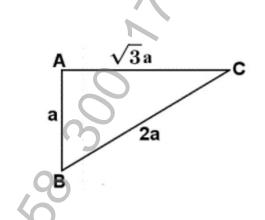
Le point H est le projeté orthogonal de E sur la droite (BC)

- 1) Montrer que triangle ABC est rectangle en A
- 2) a) Calculer $\cos \widehat{ACB}$ et $\sin \widehat{ACB}$
 - b) En déduire tan ÂCB
- 3) Calculer EH et CH

Exercice 13

On donne un triangle ABC rectangle en A tel que $ABC = 30^{\circ}$ et BC = 4a $(a \in IR_{+}^{*})$

- 1) Calculer AB et AC
- 2) La perpendiculaire en C à (BC) coupe (AB) en E ; Calculer BE et CE
- 3) Soit O le milieu de [BC], la droite (AO) coupe (EC) en F
 - a) Montrer que le triangle OAC est équilatéral
 - b) Calculer OF et CF


Exercice 14

On donne ci-contre un triangle ABC

tel que = a, $AC = a\sqrt{3}$ et BC = 2a avec a > 0

1) Montrer ABC que est rectangle en A

- 2) a) Calculer $\cos \widehat{ABC}$, $\sin \widehat{ABC}$ et $\tan \widehat{ABC}$
 - b) En déduire la valeur de l'angle \widehat{ABC} puis celle de \widehat{ACB}
- 3) Soit H le projeté orthogonal de A sur [BC]
 - a) Exprimer AH en fonction de a
 - b) Exprimer BH en fonction de a
 - c) Exprimer CH en fonction de a
- 4) a) Vérifier que $AB^2 = BH \times BC$
 - **b)** Vérifier que $AC^2 = CH \times BC$
 - c) Vérifier que $AH^2 = HB \times HC$

