Lycée de Metlaoui

Prof: kh-kherfani

Devoir de synthèse N°1

Discipline: mathématique

Niveau : 1 éme S_{1+2}

Durée: 1h30

Année scolaire: 09\10

Exercice n°:1 (4points)

Dans chacune des questions suivantes une seule réponse proposée est correcte trouver le

1) soit y un réel telque $-2 \le 4y + 3 < -1$ alors on à

a) y
$$\in \left[-\frac{1}{4}, -\frac{1}{2} \right]$$

, b) y
$$\in \left[-\frac{3}{2}, 2 \right[$$

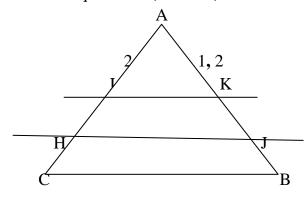
a)
$$y \in \left[-\frac{1}{4}, -\frac{1}{2} \right]$$
 , b) $y \in \left[-\frac{3}{2}, 2 \right[$, c) $y \in \left[-\frac{5}{4}, -1 \right[$

2) on à |2x - 1| = 1 alors on à

a)
$$x=1$$

, b)
$$x=-2$$
 ou $x=1$, c) $x=0$ ou $x=1$

• c)
$$x=0$$
 ou $x=1$


3) on donne $\sin x = \frac{1}{2}$ avec x est un angle aigu donc on à

a)
$$\cos x = \frac{\sqrt{3}}{2}$$
 , b) $\cos x = \frac{1}{2}$, c) $\cos x = \frac{3}{4}$

, b)
$$\cos x = \frac{1}{2}$$

, c)
$$\cos x = \frac{3}{4}$$

4) soit la figure suivante telque HI = 3, HC = 2, AJ = 3 et JB = 1.5

a)
$$(KI) // (BC)$$
 , b) $(HJ) // (BC)$, c) $(KI) // (HJ)$

Exercice n°:2

(4,5points)

Soit x et y deux réels telque $x \in [-3, 4]$ et $y \in [2, 5]$

1) encadrer 5+x,
$$(4-x)^2$$
, $-\frac{3}{2}y-3$ et $\frac{4}{2y^2-1}$

2) a) en déduire l'encadrement de
$$\frac{4(5+x)}{2y^2-1}$$

b) trouver le réel x telque
$$\sqrt{(4-x)^2} = 2$$

Exercice n°:3

(5points)

On considère les expressions suivantes

$$A=(x-3)^3-(2x+1)^3$$

$$B = x^2 + 8x - 9$$

$$C=9x^2-1-\frac{1}{4}(2x+1)(6x-2)$$

- 1) développer puis simplifier A
- 2) a) développer $(x + 4)^2 25$
 - b) factoriser B
- 3) a)factoriser C
 - b) trouver le réel x telque C=0

Exercice n°:4 (6,5points)

Soit ABCD un rectangle telque AB = 10, et AD = 5

- 1) calculer BD
- 2) soit M un point de [BC] et N un point de [CD] telque CM=2, et CN=4

a) calculer
$$\frac{CM}{CB}$$
 et $\frac{CN}{CD}$

- b) en déduire que (MN) parallèle à (BD) puis calculer MN
- 3) la droite (MN) coupe (AD) en H
 - a) calculer DH, HN et AN
- b) calculer cos DNH, sin CNM et tgNAD
- c) calculer cos CAB puis en déduire sin CAB et cotg CAB
- 4) la perpendiculaire à (BD) passant par C coupe (BD) en K
- a) calculer tgCDB
- b) en déduire que $CK = \frac{1}{2}DK$