Activités dans un repère

Dans tous les exercices le plan est rapporté à un repère orthonormé $(0, \vec{1}, \vec{j})$.

Exercice 1

 Δ est une droite graduée, $(\mathbf{0}, \vec{\imath})$ un repère de Δ et A, B et C les points de cette droite d'abscisse respectives 3, -2 et $\frac{1}{2}$

- 1) Calculer \overline{AB} et \overline{BC} puis calculer $\frac{BC}{BA}$
- 2) Déterminer l'abscisse x du point M dans chacun des cas : $\overline{AM} = -3$ et $\overline{BM} = 2$

Exercice 2

 Δ est une droite graduée, (0,1) un repère de Δ et A, B, C et D les points de cette droite d'abscisse respectives -5, 7, $-\frac{3}{2}$ et $\frac{7}{2}$

- 1) Calculer \overline{AB} , \overline{BC} , \overline{CD} et \overline{DA}
- 2) Comparer $(\overline{AB} + \overline{BC})$ et \overline{AC} , \overline{AB} et \overline{BA}
- 3) Calculer BD et BA
- 4) Trouver s'il existe un point I de Δ tel que $\overline{IA} + 2\overline{IB} = 0$
- 5) Peut-on trouver un point P de Δ tel que $\overline{3PA} 5\overline{PB} + \overline{PC} + \overline{PD} = 0$

Exercice 3

 Δ est une droite graduée, $(0,\vec{1})$ un repère de Δ et A, B et C les points de cette droite d'abscisse respectives -1,3 et $-\frac{5}{2}$

- 1) Calculer \overline{AB} , \overline{BC} et \overline{CA}
- 2) Déterminer l'abscisse x du point I sachant que $\overline{AI} = -3$
- 3) Déterminer l'abscisse y du point M sachant que $2\overline{AM} \overline{MB} = \frac{1}{2}\overline{MC}$
- 4) Déterminer y tel que $\overline{AM} + \overline{2MB} = 0$

Exercice 4

On donne les points (3, -2), B(-1, 0) et C(1, -1)

- 1) Exprimer les vecteurs \overrightarrow{OA} , \overrightarrow{AB} et \overrightarrow{BC} en fonction de \vec{i} et \vec{j}
- 2) Montrer que $\overrightarrow{BC} = -\frac{1}{2}\overrightarrow{AB}$. Que peut-on déduire

Exercice 5

- 1) a) Placer les points A(-2,3), B(-1,-1) et C(1,2)
 - b) Calculer les coordonnées du point I milieu de [BC]
 - e) Déterminer les coordonnées du point D tel que le quadrilatère ABDC soit un parallélogramme
- 2) Soit G le centre de gravité du triangle ABC
 - a) Quelle est l'abscisse du point G dans le repère (A, \overrightarrow{AI}) de la droite (AI)
- 3) a) Exprimer \overrightarrow{AI} à l'aide des vecteurs \vec{i} et \vec{j}

b) Calculer les coordonnées du point G dans le repère (0,1,1)

Exercice 6

- 1) Placer les points (-1, 2), B(3, -1), C(5, 0) et D(-1, -3)
- 2) a) Exprimer les vecteurs \overrightarrow{BC} et \overrightarrow{BD} en fonction de \vec{i} et \vec{j}
 - b) En déduire que les points B, C et D sont alignés
- 3) Soit I le milieu de [AC], calculer les coordonnées du point I
- 4) Calculer les coordonnées du point E tel que $t_{\overline{BC}}(A)=E$

Exercice 7

- 1) On donne les points A(6,-2), B(5,-7) et C(m,3) m étant un paramètre réel Pour quelles valeurs du paramètre réel m les points A,B et C sont-ils alignés
- 2) Soient $\vec{u} = (2x+3)\vec{i} + (x-2)\vec{i}$ et $\vec{v}\binom{2x-3}{x52}$ $x \in IR$
 - a) Pour quelles valeurs de x les vecteurs \vec{u} et \vec{v} sont-ils colinéaires
 - b) Pour quelles valeurs de x les vecteurs \vec{u} et \vec{v} sont égaux
- 3) On donne M(2x, x), N(-3, 2) et P(3, 5) $x \in IR$
 - a) Pour quelles valeurs de x les point M, N et P ne sont pas alignés
 - b) On suppose que M, N et P ne sont pas alignés. Calculer les valeurs possibles de x pour que

MNP soit un triangle isocèle

Exercice 8

- 1) Placer les points M(3,-1), (-5,5), C(7,-4) et Q(2,-4)
- 2) Montrer que O est le centre de gravité du triangle MNQ
- 3) Soit E le symétrique de N par rapport à M
 - a) Calculer les coordonnées de E
 - b) Ecrire \overrightarrow{EN} à l'aide de \overrightarrow{i} et \overrightarrow{j}
- 4) Montrer que les points M, N et E sont alignées

<u>Exercice 9</u>

- 1) Placer les points (-5, -2), B(7, -4) et C(4, 9)
- 2) Calculer les coordonnées du point M milieu de [AB]
- 3) Calculer les coordonnées du point I tel que $\overrightarrow{CI} = \frac{2}{3}\overrightarrow{CIM}$
- 4) Vérifier que I est le centre de gravité du triangle ABC
- 5) a) Calculer les coordonnées de J milieu de [IB]
 - **b**) Calculer les coordonnées du point N tel que $S_I(J) = N$
- 6) a) Montrer que les points A, N et C sont alignées
 - **b)** Montrer que N est le milieu de [AC]

Exercice 10

Soient les points A, B et C définies par ; A(-3,4) , $\overrightarrow{OC}=3\vec{i}-4\vec{j}$ et $\overrightarrow{AB}\binom{8}{3}$

- 1) Montrer que les points A,B et C ne sont pas alignés
- 2) Montrer que ABC n'est pas un triangle isocèle
- 3) Soit D le point du plan tel que ABDC soit un parallélogramme.

Calculer les coordonnées du point D

- 4) Soit E le symétrique de B par rapport à A. Calculer les coordonnées du point E
- 5) Montrer que D et E sont symétriques par rapport à O

Exercice 11

- 1) On donne $\overrightarrow{AO}\binom{-4}{2}$ et $\overrightarrow{OB}\binom{\frac{11}{2}}{1}$ déterminer les coordonnées des points A et B
- 2) Placer les points C(2,3) et D(0,2) dans le repère $(0,\vec{1},\vec{j})$
- 3) a) Calculer les composantes des vecteurs \overrightarrow{AB} et \overrightarrow{DC}
 - b) En déduire que le quadrilatère ABCD est un parallélogramme
 - c) Calculer les coordonnées du point I centre du parallélogramme ABCD
- 4) Soit M un point du plan tel que $\overrightarrow{OM} = 7\vec{i} + 4\vec{j}$
 - a) Calculer les composantes du vecteur AM
 - b) En déduire que A,B et M sont alignés
 - c) Calculer les distances AM et DM
 - d) Le triangle AMD est-il isocèle en M